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ABSTRACT: Interventional embolization is a popular mini-
mally invasive vascular therapeutic technique and has been
widely applied for hepatocellular carcinoma (HCC) therapy.
However, harmful effects caused by transcatheter arterial
chemoembolization (TACE) and radioembolization, such as
the toxicity of chemotherapy or excessive radiation damage, are
serious disadvantages and significantly reduce the therapeutic
efficacy. Here, a synergistic therapeutic strategy combined
transcatheter arterial embolization and magnetic ablation
(TAEMA) by using poly(lactic-co-glycolic acid) (PLGA)-
magnetic microspheres (MMs) has been successfully applied
to orthotopic VX2 liver tumors of rabbits. These MMs
fabricated by novel rotating membrane emulsification system
with well-controlled sizes (100−1000 μm) exhibited extremely low hemolysis ratio and excellent biocompatibility with HepG2
cells and L02 cells. Moreover, experimental results demonstrated that, while exposed to alternating magnetic field (AMF) after
TAE, the tumor edge could be heated up by more than 15 °C both in vivo and in vitro, whereas only a negligible increase of
temperature was observed in the normal hepatic parenchyma (NHP) nearby. Sufficient temperature increase induces apoptosis
of tumor cells. This can further inhibit the tumor angiogenesis and results in necrosis compared to the rabbits only treated with
TAE. In stark contrast, tumors rapidly grow and subtotal metastasis occurs in the lungs or kidneys, causing severe complications
for rabbits only irradiated under AMF. Importantly, the results from the biochemical examination and the gene expression of
relative HCC markers further confirmed that the treatment protocol using PLGA-MMs could achieve good biosafety and
excellent therapeutic efficacy, which are promising for liver cancer therapy.
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1. INTRODUCTION

Liver cancer has been typically considered as one of the
deadliest and most common tumors worldwide.1−3 In
particular, treating patients with hepatocellular carcinoma
(HCC) is complicated and difficult because the liver with
highly vascularized and accessible capillaries can act as an ideal
shelter for tumor cells.4,5 Although the surgical resection
remains the gold standard, HCC is still inoperable in many
cases due to the usually late diagnosis, and due to the high
recurrence rate.6,7 Hence, developing strategies for increasing
the effectiveness of the treatment remain a great challenge.

In the past few years various forms of treatments have been
developed, including chemotherapy, radiotherapy, physical and
chemical ablation or other local approaches.8,9 Among these,
the transcatheter arterial embolization (TAE) as a noninvasive
vascular interventional treatment has a high reputation. Via the
injection of the embolic agents through a catheter, the tumor
feeding arteries can be effectively occluded, and consequently,
the nutrition and oxygen supply can be cut off.10−12
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Clinically available embolic agents cover liquids, hydrogel
and particles, etc. However, the majority so far are permanent,
polydispersed, and irregularly shaped.13 Therefore, the embolic
agents mentioned above would suffer high risks regarding post-
embolization syndromes and are unable to precisely control the
level of embolization.14,15 Thus, the biodegradable, regularly
shaped and uniform sized microspheres should be preferred.16

Kirchhoff and co-workers used the degradable starch micro-
spheres (Spherex, Pharmacia, Erlangen, Germany) for the
TACE procedure.17 While co-injecting Spherex with anticancer
drugs (cisplatin and doxorubicin) for occluding the target
artery, the drugs could retention in a certain of time until the
microspheres degraded by serum α-amylases. The clinical
advantage was associated with limited tumor size and hyper-
vascularization, which should be seen as suitable palliative
measure for patients who do not tolerate long acting embolic
agents. Similarly, Golzarian et.al18 successfully prepared
chitosan and carboxymethyl cellulose (CMC)-loaded doxor-
ubicin microspheres. These biodegradable microspheres with
tunable drug release profile could minimize the side effects of
the chemotherapy while significantly enhancing the antitumor
ability compared with other similar agents. Moreover, the
experimental animal studies indicated that these biodegradable
microspheres are highly promising for TACE applications.
Although these widely applied therapy methods show
reasonable efficacy and can reduce symptoms to some extent,
they still have only limited success in HCC therapy as well as
the metastasis and recurrence rates.19

In contrast to TACE, TAE combined with magnetic
hyperthermia and ablation (TAEMH and TAEMA; the
temperature between 42 and 46 °C was defined as hyper-
thermia, while over 50 °C was called ablation) as a promising
therapeutic strategy for liver cancer treatment has attracted
increasing attention. It is worth mentioning that magnetic
hyperthermia with designed magnetic field and frequency can
directly induce the tumor cell apoptosis above 42 °C and even
cause necrosis when the temperature was greater than 50 °C
(ablation). Hence, many successful cases based on this principle
were reported in recent studies.20−22 Our previous study
reported that modified high-performance Mn−Zn ferrite
nanocrystals exhibit an enhanced functionality for magnetically
induced cancer targeted hyperthermia.23 For instance, Yu and
co-workers24 performed the treatment with arsenic trioxide
(As2O3) and lipiodol mixture to inhibit tumor growth and
greatly improve survival of the intrahepatic VX2 tumors in their
study. They found that the antitumor effects are partly due to

inhibition of tumor angiogenesis that might correlate with
altered VEGF expression in the tumor and plasma. Later,
Yang’s team investigated the effect and feasibility of TAEMH,
especially to assess the influence of heat on surrounding organs
in established transplanted rabbit VX2 hepatic tumors while
exposed to AMF after embolization with ferromagnetic NPs.
Results have shown that tumor growth and metastasis can be
controlled by magnetically heating effectively. This would be a
promising clinical treatment of HCC.25 Although the
advantages of TAEMH and TAEMA are the inhibition of
tumor growth and to possibility to reach high heat in tumor
regions, the continuing tumor growth as well as the inevitable
damage to the surrounding organs are an issue. This is due to
the magnetic fluid might escape easily from the lipiodol
emulsion or microsphere suspension, and even the small-size
embolic agents might increase the risk of bile duct system
damage in this procedure.26 Consequently, there is an urgent
need for finding an innovative product to overcome these
issues.
Poly(lactic-co-glycolic acid) (PLGA) is well-known as

artificially synthesized polymer that has been approved by the
Food and Drug Administration (FDA) and the European
Medicine Agency (EMA) to serve as pharmaceutic auxiliary.27

Therefore, we used it to develop an improved TAEMA
therapeutic strategy in rabbit liver VX2 tumor models to
evaluate the feasibility, safety, and anticancer effects with
respect to PLGA-magnetic microspheres (MMs). The PLGA-
MMs were fabricated by the novel rotating membrane
emulsification, which provides not only excellent stability and
uniformity but also significant biocompatibility and biodegrad-
ability. More importantly, for both embolic agents and heating
agents, remarkable magnetically induced heating effects can be
achieved while exposing numerable PLGA-MMs to AMF, and
the enhanced effect of embolization can be achieved by
changing the phase-transition temperature of PLGA during the
magnetic ablation procedure. To further evaluate the TAEMA
therapy, biochemical tests and gene expressions were
performed. Overall, therapeutic effect in vivo revealed that
TAEMA by using PLGA-MMs show several advantages as a
highly synergistic anticancer system.

2. EXPERIMENTAL SECTION
2.1. PLGA-Magnetic Microspheres Preparation. The MMs

with a controllable size range from 100 to 1000 μm were prepared
using a rotating membrane emulsification system (Nanotech,
Changsha, China). Notably, the pores with the size of 120 ± 10 μm
and the mean pitch of 1500 μm, which we used in a poly

Figure 1. Schematic diagram of PLGA-MMs synthesized via rotating membrane emulsification: (A) water-and-oil emulsion process and (B)
membrane emulsification process.
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tetrafluoroethylene (PTFE) membrane, were arranged in a cubic array,
and the wall thickness of the membrane was approximately 800 μm.
The preparation process was similar to that of a previously published
article.28 As schematically shown in Figure 1, first, 1 mL of 1% (w/w)
PVA (Sigma-Aldrich, MO) with moderate Span-80 was added to 15
mL 5% (w/v) PLGA-dichloromethane (Daigang Biomaterial Inc.,
China). Afterward, 100 mg of microwave-assisted thermal decom-
position approach formed Fe3O4 NPs29 20 nm in size (Monowave
300, Anton Paar, Austria) were added under intensive stirring for 5
min to form a water-and-oil emulsion (the TEM image, XRD
diffraction, and hysteresis loop of as-synthesized Fe3O4 NPs can be
found in Figure S1). Subsequently, the suspension was placed in
injector, and the suitable injection speed was changed from 0.1 to 10
mL/min. Under the force generated by membrane tube rotation (with
tunable speed between 200 and 800 rpm/min), the water-and-oil
emulsion permeated through the porous wall into the continuous 2%
(w/v) PVA phase to form uniform droplets. Afterward, the curing
process was carried out by stirring the droplets at room temperature
until the dichloromethane volatile completely. Finally, the obtained
MMs were washed with ethanol and ultrapure water, respectively.
2.2. Characterization of PLGA-MMs. The microparticle structure

and the localization as well as the structure of the embedded Fe3O4
NPs in PLGA-MMs was analyzed by transmission electron microscopy
(TEM) and high-resolution TEM (HRTEM) using a Tokyo JEOL
JEM-2100. Powder X-ray diffraction (XRD) spectra was recorded on a
Bruker X-ray diffractometer (D8-Discover) operated at 40 mA and 40
kV. Meanwhile, the morphology of the as-prepared MMs was analyzed
using a field-emission scanning electron microscope (SEM, Zeiss Ultra
Plus, Germany) coupled with energy-dispersive spectroscopy (EDS).
The infrared spectra of the Fe3O4 NPs and MMs was recorded with a
Nicolet iS-50 Fourier transform infrared (FTIR) spectrophotometer
(Thermo Fisher Scientific). The magnetism of as-synthesized Fe3O4
NPs and MMs were measured by a vibrating sample magnetometer
(VSM, Lakeshore 7407). Iron concentrations of the MMs were
evaluated using the classical 1,10-phenanthroline (phen) colorimetric
method on UV−vis spectrophotometry (Shimadzu UV-3600, Japan).30
Additionally, the total Fe3O4 NPs content of the MMs was obtained by
thermogravimetric analysis (TGA, NETZSCH STA449 F3) employing
temperatures from ambient to 800 °C with a suitable heating rate of 10
°C/min under a flow of N2. Meanwhile, the glass transition
temperatures (Tg) of the MMs was measured on a differential
scanning calorimeter (DSC, PerkinElmer DSC8000) from 10 to 200
°C with same heating rate under a N2 flow. The dichloromethane
residual volume in MMs was determined by gas chromatography
employing a microelectron capture detector (Agilent 7890B).
2.3. In Vitro Heat-Induction Measurements. The heating

experiments of PLGA-MMs in vitro was carried out using a moderate
radio frequency of a magnetic heating system (Shuangping SPG-06-II,

China). The samples were dispersed in an aqueous solution with a
concentration of 30 mg/mL and were placed inside a copper coil
under an AMF. The temperature was measured with an FOT fiber
optic sensor (FISO, Canada). Additionally, the quantitative evaluation
of magnetocaloric experiment based on countable MMs was also
performed under identical conditions, using thermal infrared imager
(Fluke, Ti-32) for recording (1, 6, 12, and 25 MMs with sizes of 300−
400 μm and 500−600 μm were capsuled into the capillary tube,
respectively). Of particular importance is the specific absorption rate
(SAR) for quantifying the heating efficiency of the magnetic materials
when an AMF magnetic field is applied (390 kHz, 12 A). The SAR
value can be calculated by the formula SAR= C × (dT/dt) × (ms/mm),
where C is the specific heat of the species in solution, dT/dt stands for
the initial slope of the T/t curve, ms is the weight of the whole
suspension, and mm indicates the total mass of magnetic material in
suspension.31

2.4. Cell Culture and Cytotoxicity. HepG2 cells and HL7702
cells were originally obtained from the KeyGen Biology Technology
Company (China). Cells were usually cultured under suitable
conditions, grown at 37 °C in a humidified incubator with 5% (v/v)
CO2 in RPMI 1640 medium (KeyGen Biology, China), supplemented
with 10% (v/v) fetal bovine serum (FBS, Sijiqing, Hangzhou, China),
antibiotics (100 U/mL streptomycin and 100 U/mL penicillin). A 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay was used to evaluate the cytotoxicity of MMs. After washing
with phosphate-buffered saline and UV disinfection, various
concentrations of MMs (i.e., 10, 30, and 50 mg/mL, n = 4 per
group) were added for co-incubated with cells at 37 °C for 12, 24, 48,
and 72 h, respectively. Following this incubation, the cells were mixed
with MTT (0.5 mg/mL) for 4 h, based on the standard operation.
Subsequently, the absorbance at 490 nm was detected using a
microplate reader (BIO-RAD680).

2.5. In Vitro Magnetic Ablation Experiments and Apoptosis
Assay. HepG2 cells were either co-incubated with aseptic MMs (10
mg/mL) in a 30 mm culture dish or self- incubated and then placed
inside a copper coil under AMF (390 kHz, 12 A) for 30 min. Thermal
infrared imager (Fluke, Ti-32) was used for real-time tracking.
Typically, the cells that were treated with MMs in ambient
temperature were used as the control. The Annexin V-FITC−
propidium iodide (PI) assays were carried out to evaluate apoptosis
using flow cytometry (FCM). According to the manufacturer’s
protocol, 1 × 105 cells were treated with apoptosis assay kit
(KeyGEN) for 15 min at room temperature avoiding light. Afterward
FCM (FACS Calibur, BD) was used to analyze the apoptotic and
necrotic status.

2.6. Hemolysis Assay. Fresh rabbit blood was collected (obtained
from Model Animal Research Center of Southeast University) and
preserved in a tube (BD Vacutainer) . The serum was removed from

Figure 2. Flowchart of the TAE combined with the magnetic ablation (TAEMA), showing groups of rabbits and the experimental procedure.
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rabbit blood by centrifugation for 15 min at 1800 rpm/min. The
supernatant phase was removed and the residual blood cells at the
bottom were washed fully with sterilized saline (0.9%, w/v). The blood
cells were diluted (1:10) with 0.9% (w/v) saline to form 2% (v/v)
suspension after washing. To the suspension were added: (A) 50 mg/
mL MMs solution, (B) 30 mg/mL MMs solution, (C) 10 mg/mL
MMs solution, (D) 5 mg/mL MMs solution, equal volume of
(E)sterilized saline and (F)distilled water. The mixture was used as a
negative and positive control, respectively. The mixtures were stirred
at room temperature for 2 h. Finally, they were centrifuged, and the
OD values of the supernatant clear solutions were measured at 540
nm, using a Shimadzu UV-3600 UV−vis absorption spectropho-
tometer. The percentage of hemolysis rate (HR) for MMs samples in
various concentration was calculated as HR = (ODMMs − ODnegative)/
(ODpositive − ODnegative).

32

2.7. Biodegradation Assay in Vitro. The biodegradation assay
was carried out by simulating the in vivo environment, while the
PLGA-MMs were co-incubated in culture medium, which was as
similar to the cell culture mentioned above, except the fact that
antibiotics were abandoned. Samples were selected randomly at day 1,
5, 15, 30, 45, and 60; washed fully with ultrapure water; and then
measured by SEM.
2.8. Animal Models and Experimental Protocol. Thirty male

New Zealand white rabbits (3−3.5 kg in weight, n = 6 per group) were
purchased from the Model Animal Research Center of Southeast
University, and all animal experimental procedures were in accordance

with the guidelines of the Institutional Animal Care and Use
Committee of Southeast University (license no. SYXK-2016-0013).
Figure 2 shows the flowchart of experiment protocol. The orthotopic
models of liver tumors were established by using VX2 carcinoma as
previously reports.24,33 The rabbits from group 1, 2, and 3 received the
TAE 2 weeks after tumor implantation. Magnetic ablation was induced
on day 5 after TAE for group 2 and 3. Group 4 received the same
irradiation procedure under AMF but without TAE. Group 5 was used
as control. Finally, two rabbits were randomly selected from groups 1,
3, 4, and 5 and were sacrificed on day 25 after implantation for
histopathological examination and bioinformatics analysis, whereas the
other four rabbits in each group were kept for survival observation.

2.9. Treatment Procedure. TAE was carried out on day 14 after
tumor implantation. First, rabbit was anesthetized by 2% (w/v)
sodium pentobarbital (1 mL/kg intravenous infusion, Sigma-Aldrich,
MO), and a 4F vascular sheath was then placed into the femoral artery
(Terumo, Tokyo, Japan). Selective catheterization to the hepatic artery
feeding carcinoma was achieved by utilizing a 2.7 F microcatheter
(Terumo, Tokyo, Japan) under DSA, which can guarantee tumor
targeted embolization and spared arterial flow through the hepatic
artery into the liver. Subsequently, a mixture containing 30 mg MMs
(100−150 μm) and moderate contrast agent (iohexol, Yangzijiang
Pharmaceutical Co., China) was then carefully injected into the tumor-
feeding artery via microcatheter. After that, irradiation protocol was
applied on day 5 after TAE for group 2 and 3 using a moderate radio
frequency of magnetic heating system (Shuangping SPG-10-III,

Figure 3. (A) SEM images and related element mappings of PLGA-MMs; (B) the cross-section of MMs captured by microscope (Prussian blue
stain); (C) TEM and (D) HRTEM image of the embedded Fe3O4 NPs in MMs; (E) corresponding FTIR spectra; (F) field-dependent hysteresis
loop of MMs at room temperature; (G) TGA curve of MMs; (H) time-dependent temperature curves of MMs (insets are near-infrared images
before and after heating); (I) schematic drawing of magnetically induced heating; and (J) DSC curve of MMs.
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China), as well as for group 4 (without TAE). All rabbits received the
anesthesia procedure as described above and were then treated with
AMF (500 kHz, 16A) for a period of 30 min. To verify the efficiency
of the magnetic ablation induced by high-performance MMs, the
rabbits in group 2 were sacrificed after in vivo ablation. The liver was
removed immediately for in vitro ablation under identical conditions.
The similar in vitro irradiation procedure also applied for group 4
while rabbits died.
2.10. Biochemical Assay. Fresh serum (2.0 mL/sample) of group

1, 3, 4, and 5 was collected for biochemical examination on day 3 and
day 1 before the TAE and also on day 1, 3, 7, 10 after the treatment.
The alanine transaminase (ALT), aspartate aminotransferase (AST),
and blood urea nitrogen (BUN) as well as creatinine (Cr), and total
bilirubin (TBil) levels were measured using a biochemical auto
analyzer (Beckman AU5800).
2.11. Histopathological Analysis. The rabbits were sacrificed by

intravenous injection of overdose of sodium pentobarbital for
histopathological evaluation. The liver was removed and stabilized
with 4% (v/v) buffered formalin for paraffin section preparation. All
paraffin-embedded samples were stained with hematoxylin and eosin
(H&E), and the histopathological pictures were finally taken using a
microscopy imaging system (Nikon ECLIPSE E200, Japan)
2.12. RNA Isolation and Quantitative Polymerase Chain

Reaction. Total RNA was isolated from fresh hepatic tissue of each
group using Trizol Reagent (Invitrogen Life Technologies) according
to the manufacturer’s protocols and then converted into cDNA by
using Revert Aid First Strand cDNA Synthesis Kit (Thermo
Scientific). Afterward, real-time quantitative polymerase chain reaction
(Q-PCR) was performed using Fast Start Universal SYBR Green

Master (Roche, Switzerland). The information on gene-specific
primers is shown in Table S1, and the relative quantification of gene
expression was evaluated using the 2−ΔΔCt method.34 Each sample was
tested in triplicate and threshold values were determined, average
values and mean standard deviation were also calculated, and the
mRNA levels were normalized to the GAPDH (housekeeping gene) in
same sample.

3. RESULTS AND DISCUSSION

3.1. Characterization of PLGA-MMs. The SEM images of
as-prepared PLGA-MMs, which consist of microwave-formed
Fe3O4 NPs, were shown in Figure 3A. These MMs have
smooth surfaces and show relatively uniform size distribution
from 100 to 150 μm. One can be clearly see from the element
mappings that the elements Fe, O, and C were distributed
uniformly on the surface of each sphere-like structure. In
particular, the sponge-like structure was found inside the
spheres while capturing the cross-section of MMs by
microscope (Figure 3B, Prussian blue stain). Furthermore,
the localization, as well as structure of embedded Fe3O4 NPs
were also confirmed by TEM and HRTEM, respectively
(Figure 3C,D).
As shown in Figure 3E, the analyses of PLGA-MMs

examined using FTIR revealed the presence of characteristic
absorbance peaks in the regions of 1082, 1745, 2924, and 3480
cm−1, which can be assigned to C−O−C, CO, C−H, and

Figure 4. Quantitative evaluation of magnetic-induced heating performance based on 1, 6, 12, and 25 PLGA-MMs of 300−400 μm in size (panels
A−H) and 500−600 μm (panels I−P), respectively. Thermal infrared imager was used for real-time tracking, and the insets are different numbers of
MMs that capsuled into the capillary tube. Scale bar: 1 cm.
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−OH vibration modes for PLGA.35 Fe3O4 NP induce peaks at
570 and 3450 cm−1 can be assigned to the Fe−O and −OH
stretching vibration absorption. The bending vibration of −OH
was confirmed by the peak at 1624 cm−1.36 In addition, the
magnetic performance of MMs is of great importance for their
biomedical applications. The Ms of MMs measured by VSM at
ambient temperature showed an excellent magnetization value
of 7.2 emu/g, and slight remaining magnetization was observed
in hysteresis loop for MMs (Figure 3F). Based on the result in
Figure 3G, the completed thermal decomposition of the PLGA
resulted in a weight loss of 90.5% at 500 °C, and the residue
turned out to be iron oxides. Moreover, the magnetically
induced heating measurement in alternating magnetic field
(AMF, 390 kHz, 12 A) shows an SAR of 415 w/g of the as-
prepared MMs with a concentration of 30 mg/mL in aqueous
solution (the specific heat capacity of an aqueous solution is 4.2
kJ·kg−1·K−1), (Figure 3H,I). Due to the excellent magnetic heat
induction effect of the MMs, the temperature is much higher
than the glass transition temperature (Tg) of PLGA (50 °C,
Figure 3J), which leads to a significant increase of the molecular
motion that caused by phase transition from the glassy state to
the rubbery state. The gas chromatography with ECD pattern
was used to measure the residual volume of dichloromethane in
PLGA-MMs.37 The result 0.034% is far below the International
Conference on Harmonization (ICH) standard for drug
registration and technique requirements of 6 mg/day or 600
ppm.38

3.2. In Vitro Performance Evaluation of PLGA-MMs. As
presented in Figure 4, the quantitative evaluation of magnetic-
induced heating performance based on countable MMs (i.e., 1,
6, 12, and 25) with sizes of 300−400 μm and 500−600 μm
indicated that temperature rise along with the quantity of MMs
increase. In particular, the temperature of 6 MMs, which
capsuled into the capillary, were detected to be ca. 39 °C (300−
400 μm in size) and 44 °C (500−600 μm), respectively, while
encapsulated 25 MMs then possess the maximum of ca. 60 °C
(with size of 300−400 μm) and 63 °C (500−600 μm),
respectively. The outstanding heating efficiency by exposing
numerable MMs to AMF was attributed to the microwave
formed Fe3O4 NPs, so that the Ms value and SAR value of
obtained PLGA-MMs were higher than the reported polymer
MMs with similar size or with the same mass of iron.39,40

To evaluate the cytotoxicity and biocompatibility of PLGA-
MMs, we performed a cell viability assay. HepG2 cells and
HL7702 cells were treated with various concentrations of MMs
for 12, 24, 48, and 72 h respectively, and then we employed
MTT incubation to determine cell viability. The results showed
that the cells possess a viability of more than 95% at all tested
dosage and all exposure time, even after an exposure for 72 h
with concentration 50 mg/mL (Figure S2). We also conducted

Annexin V/PI apoptosis assay of MMs using HepG2 cells.
Results in Figure S3 showed that the ratio of living cells
decreased sharply while applying AMF for 30 min with MMs,
which indicates the magnetothermal effect by MMs is
responsible for both apoptosis and subsequent necrosis.41

As can be seen from Figure S4, the degree of hemolysis
induced by MMs show no significant difference to the negative
control (saline). Apparently, MMs show extremely low
hemolysis rate, even applying the maximum dosage of 50 mg
(3.3%), which is considered as a critical safe hemolytic ratio
(less than 5%) according to ASTM F756 and ISO/TR 7406.42

Because the duration of embolization is a critical issue, the
biodegradation of MMs was traced under simulated in vivo
condition and used SEM to record at day 1, 5, 15, 30, 45, and
60, respectively. As shown in Figure S5, the surface of MMs
became rough on day 15, the exfoliation occurred at day 30.
Although slightly cracks could be observed at day 60, the MMs
remain in optimal shape, which demonstrated that it takes very
long until the as-prepared PLGA-MMs are degraded. It should
note that the degradation behavior of PLGA is closely related to
the molecular weight, as well as the chain ratio of LA and GA.
All of the in vitro results suggest that the PLGA-MMs can be
considerable for HCC therapy with TAEMA.

3.3. TAEMA Treatment Process Using PLGA-MMs. The
PLGA-MMs mediated therapeutic protocol combining TAE
and magnetic ablation for HCC treatment as shown in Figure 2.
Usually a mixture containing iodized oil and magnetic fluid is
used as reported in the previous investigations.24,43−45

However, the dose limitation and detention time of iodized
oil, as well as the unavoidable problem of leaking magnetic
fluid, still remains a great challenge for ensuring the curative
effect. Our results of the in vitro evaluation using the PLGA
MMs show significant advantages of TAEMA compared with
current methodologies. These advantages can be ascribed to the
use of the MMs, which show a synergistic antitumor effect
because of two important properties: their effective emboliza-
tion and their outstanding magnetothermal performance.
The TAE process was performed using a digital subtraction

angiography system (DSA, Philips, BV Pulsera) according to
clinical regulations. The angiography showed that the tumor
was surrounded by rich blood capillaries, especially at the edge
(Figure 5A). Notably, blood vessels of its neighboring normal
hepatic parenchyma (NHP) were swollen after embolization,
which indicates that MMs were deposited in the area of the
lesion to a significant extend and consequently blocked the
feeding routes (Figure 5B,C). In comparison to hepatic
angiography, the corresponding computed tomography (CT,
GE, HiSpeed NX/I) showed inconspicuous gray variation
before TAE because the contrast agent was metabolized too fast
to be traced (Figure S6A). However, an enhanced signal in the

Figure 5. Angiography of the hepatic artery. (A) The stain of a hyper-vascular tumor (red arrow) in the left lobe of liver before embolization. (B)
The feeding arteries of the tumor were successfully occluded by PLGA-MMs after embolization. (C) DSA image of the completed hepatic
angiography after TAE (black arrow indicates the 2.7F microcatheter in the hepatic artery).
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tumor region was obtained after 2 h of TAE (Figure S6B),
revealed that the contrast agent within the mixture of MMs was

trapped in peripheral vascular. Furthermore, the artifact of
magnetic resonance imaging (1.5T MR scanner, Philips, MR

Figure 6. Real-time temperature monitoring for magnetic ablation in group 2. (A) A photograph of a rabbit of group 2 in AMF (inset is near-infrared
image); (B) in vivo and (C) in vitro time-dependent temperature curves of liver tissue; (D−F) the in vivo and in vitro time-dependent temperature
curves of liver during irradiation with AMF for a group 4 rabbit (treated under identical conditions). Black and red arrows indicate the location
where optical fiber inserted in tumor edge or NHP.

Figure 7. Histopathological images of liver in each group (H&E stain). (A1) Pathological specimen of TAE in group 1. (A2, A3) Pathological
sections of TAE in group 1. (B1) Pathological specimen of TAEMA in group 3. (B2, B3) Pathological sections of TAEMA in group 3. (C1)
Pathological specimen of group 4 (only irradiation under AMF). (C2, C3) Pathological sections of group 4. (D1) Pathological specimen of control
group. (D2 and D3) Pathological sections of control group. All of the images of pathological sections were taken at 100× magnification. Scale bar:
200 μm.
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Systems Achieva), which further indicated that the MMs are
still trapped around the tumor at day 5 after TAE (Figure S6C).
To demonstrate the MMs heating ability to tumors, rabbits

in group 2 and 3 after TAE on day 5, and also the rabbits of
group 4 after tumor implantation were fixed in a bowl-shaped
coil to performed the irradiation under AMF. For real-time
temperature tracking, the rabbits’ abdomen in group 2 and 4
were opened and two fiber sensors (FOT series fiber optic
sensor, FISO, Canada) were inserted into their liver. Note that
one fiber sensor was located in the tumor edge, while the other
was placed in the surrounding NHP, and all the data of
temperature recording was summarized in Table S2. After
exposure to the AMF, the temperature of the tumor edge in
group 2 started to increase and was still rising. Finally, the ΔT
was more than 15 °C in 30 min, while the NHP of the liver just
increased its temperature by less than 5 °C without damaging
neighboring healthy tissue46 (Figure 6A,B). In contrast, the
temperature measurement for group 4 revealed only poor
heating. This low heat increase can be attributed to the
convective heat transfer of copper coil (Figure 6D,E). We also
performed the in vitro ablation procedure for rabbits in group
2, which were sacrificed after in vivo thermotherapy, whereas
the rabbits in group 4 received the AMF irradiation while they
died. As expected, the same heating performance was observed
(Figure 6C,F).
3.4. Evaluation of the Therapeutic Effect of TAEMA. It

was evident that the tumor-inhibiting effect after TAE was due
to the super selective embolization of MMs cutting off the
nutrition supply, which is necessary for tumor survival. This
results in the devascularization and progressive shrinkage of the
tumor47 (Figure 7A1, group 1). TAEMA is a complementary
treatment that consists of selective arterial embolization and
AMF exposure to generate efficiently heat over 50 °C. Because
the blood vessel in tumor is chaotic and tortuous that caused
the blood flow inside unlike others. Thereby, the heat
conduction and cooling mechanisms of tumor ablation might
lead to the highly vascularized tumor edge acting as a container

to accumulate heat energy and then transfer to the tumor core
or normal tissue in contrast to the other part of liver.48

Continuous temperature above 50 °C can cause cancer cells
more sensitive and render massive necrosis in a certain extent,
which leads to a thick fibrocollagenous capsule around the
tumor eventually,49 Figure 7B1 (group 3). In contrast, the
process of artery occlusion to prevent nutrient supply,
combined with magnetic ablation for acute necrotizing of the
tumor has not been performed for group 4 (irradiation under
AMF only) and group 5 (control), so that intrahepatic
metastasis occurred50 (Figure 7C1,D1). Evidence also can be
seen that based on the pathologic specimens of Figure S7. The
necrosis area that caused by TAE and TAEMA was found in the
left lobe of liver for group 1 and 3 (the first and the second
row). Especially, the sign of heating is noticeable on the surface
around the tumor site (group 3), which indicated that the
TAEMA has good therapeutic effect. However, the size of
tumor in group 4 and 5 was found much bigger than group 1
and 3, and the biological features of infiltrative growth was also
observed. In particular, according to the cross-section of tumor
in group 4 and 5, it contained focally rather small necrosis in
the center and additionally small cavernous vessels, such a
feature was strongly correlated to tumor malignancy.
Consequently, a number of tumor metastasis and severe
complication were seen elsewhere in the pathologic specimens
of lungs and kidneys for group 4 and 5, respectively (Figure S7,
third and fourth row).
In addition, histological examination of livers from each

group was performed to further evaluate the antitumor effect of
TAEMA. The slices of group 1 (Figure 7A2,A3) clearly showed
that the majority of MMs were blocking and agglomerating in
the small arterial vessel around the tumor. Meanwhile, the
infarction, which was associated with tumor cell degeneration
and necrosis, was also observed in the tumor tissue. The main
pathologic changes after TAEMA (group 3, Figure 7B2,B3)
presented larger infarctions (areas of coagulative necrosis) close
to the tumor edge compared to TAE due to the high

Figure 8. Biochemical tests of (A) ALT levels, (B) AST levels, (C) BUN values, (D) plasma Cr values, and (E) plasma TBil levels.
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temperature that would make the vacuolization of cytoplasm
worse and consequently result in extensive necrosis to the
tumor region. However, the observation of pathologic changes
for both TAE and TAEMA were in sharp contrast to the group
only treated with irradiation (Group 4, Figure 7C2,C3) and
control group (Group 5, Figure 7D2,D3), while the
phenomenon of cancer cell proliferation can be found in
abundance in the tumor tissue. More importantly, the phase
transition of PLGA induced by sufficient temperature elevation
plays crucial role for therapy. Because the high temperature
above the Tg (50 °C) would cause adhesion behavior by
melting of the surface of PLGA microspheres. The hypothesis
was confirmed via pathological sections with Prussian blue stain
of TAE (group 1, Figure S8A1−A3) and TAEMA (group3,
Figure S8B1−B3), respectively. Therefore, the advantage of
PLGA-MMs should be highly promising to achieve the enhance
effect of embolization through the aggregation on long-term
and the adaptive deformation in tumor vessels.
As exhibited in Figure 8A,B, ALT and AST levels of group 1

and 3 increase significantly compared with the other groups on
day 1 after the TAE but decrease to levels close to normal
within further 10 days, indicated the TAEMA was successfully
performed without affecting the liver function. It should
mentioned that the ALT and AST levels of group 3 went up
slightly after magnetic ablation compared with those that just
received TAE at the same time (day 5 after TAE), whereas
there is no indication of change for group 4 rabbits only
received the irradiation. However, there is no distinct difference
in the plasma Cr and TBil levels for any group (Figure 8D,E);
however, the BUN level change in group 5 was in contrast to
the others, and it might be due to the tumor metastasis, which
would eventually affect renal function (Figure 8C).
To acquire more concrete proof that TAEMA is an effective

and feasible strategy, the real-time relative-quantitative
polymerase chain reaction (Q-PCR) was used to investigate
the expressive changes of important genes related to the HCC,
including tumor protein p53 (p53),51 aldehyde dehydrogenase
1 family (ALDH1A1, also known as retinaldehyde dehydrogen-
ase 1),52 and vascular endothelial growth factor (VEGF),
respectively.53 In fact, p53 possesses sophisticated mechanisms
of anticancer function and plays a role in apoptosis, genomic
stability, and inhibition of angiogenesis. Meanwhile, the
enzymatic activity of ALDH1A1 has been identified as one of
the markers of cancer stem cells, and the high expression is
associated with prognosis in a variety of solid tumors.54

Furthermore, tumors usually secrete a series of materials that
accelerate the speed of vascularization. Owing to the

incomplete structure and deficient function of neovasculariza-
tion, tumor cells may into the circulation by enhanced
permeability and retention (EPR) effect then cause meta-
stasis.55 These findings provide evidence for the successful
application of PLGA-MMs in HCC therapy and understand the
TAEMA’s antitumor mechanism on molecular level.
As shown in a previous report the mRNA expression level of

related markers in HCC can be down-regulated after the
therapy.56 As shown in Figure 9A, low-level p53 expression was
observed for group 1 rabbits. This is in stark contrast to the
highly expressed group 4 and 5, which suggests that the growth
of tumor could be effectively suppressed by TAE treatment.57

However, the behavior in group 3 (TAEMA) was up-regulated
2−3 fold because p53 is acting as a heat-shock protein, so that
thermal induced activation leads to significant increase of the
expression in body.58 According to the result in Figure 9B, the
expressions of ALDH1A in group 4 and 5 were up-regulated 5−
6 fold to group 1 and 3, the abnormal expression may be related
to tumor occurrence, invasion, and metastasis.59 Meanwhile,
the overall response in group 3 was better compared to group
1, which also demonstrated the TAEMA achieve better
therapeutic effect than TAE. High VEGF protein expression
was used as a factor for tumor-growth prediction. The results
presented in Figure 9C for VEGF expression were similar to the
trend of p53. The value detected from group 4 and 5 rabbits
was over-expressed in comparison with group 1 and 3, which
means the permeability of the vessel increased. This leads to
acceleration of spreading of endothelial cells and was
responsible for the activation of angiogenesis in tumor growth
and metastasis.60

Moreover, the survival curve based on Kaplan−Meier
method61 (Figure S9) exhibits a significant survival benefit
for rabbits in group 1 and 3, which were treated with TAE or
TAEMA (with the longest survival time of 54 day) compared
with those with extensive tumor in groups 4 and 5 (survival
time of less than 33 days). The MMs can induce tumor
ischemia and hypoxia as well as the continuous release of heat
into the lesions. Consequently, they can selectively kill tumors
in a long-lasting manner. Our results further demonstrated that
applied PLGA-MMs for TAEMA could provide a dramatically
improved therapeutic efficacy in HCC therapy.

■ CONCLUSIONS

In summary, we have successfully developed a combined
embolization magnetic ablation strategy for orthotopic
hepatocarcinoma therapy using VX2 orthotopic models. The
rotating membrane emulsification system formed PLGA-MMs

Figure 9. Analysis of mRNA expression by Q-PCR: (A) p53, (B) ALDH1A1, and (C) VEGF, respectively; GAPDH was used as a house-keeping
gene.
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with ideal behavior, and the treatment protocol finally resulted
in excellent synergistic therapeutic effects. We could suppress
associated tumor angiogenesis and also cause necrosis of tumor
cells due to comparably high magnetically induced temper-
atures. More importantly, the phase transformation of PLGA
from the glassy state to the rubbery state that induced by
magnetic heating effects could enhance MMs aggregation, and
subsequently leading to longer lasting of embolization in tumor
regions without severe side effects. Additionally, performed
biochemical test demonstrated that the TAEMA using PLGA-
MMs has a limited effect on liver and kidney function.
Especially, the expression changes of HCC related makers show
how TAEMA affect the outcomes from molecular level. Our
results demonstrate that the TAEMA strategy using high-
performance PLGA-MMs is another highly promising strategy
for HCC therapy besides TACE and radioembolization.
Detailed investigation of the PLGA-MMs metabolism in vivo
and further experiment to evaluate the mechanism for TAEMA
are underway.
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