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SPECIAL ISSUE: Biomaterial Foundations of Therapeutic Delivery

Magnetic drug delivery systems

Yang Liu, Mingxi Li, Fang Yang™ and Ning Gu"

ABSTRACT There has been unprecedented progress in the
development of biomedical nanotechnology and nanoma-
terials over the past few decades, and nanoparticle-based
drug delivery systems (DDSs) have great potential for clin-
ical applications. Among these, magnetic drug delivery
systems (MDDSs) based on magnetic nanoparticles (MNPs)
are attracting increasing attention owing to their favor-
able biocompatibility and excellent multifunctional loading
capability,. MDDSs primarily have a solid core of super-
paramagnetic maghemite (y-Fe.Os) or magnetite (Fe;Oy)
nanoparticles ranging in size from 10 to 100nm. Their
surface can be functionalized by organic and/or inorganic
modification. Further conjugation with targeting ligands,
drug loading, and MNP assembly can provide complex
magnetic delivery systems with improved targeting efficacy
and reduced toxicity. Owing to their sensitive response to
external magnetic fields, MNPs and their assemblies have
been developed as novel smart delivery systems. In this
review, we first summarize the basic physicochemical and
magnetic properties of desirable MDDSs that fulfill the
requirements for specific clinical applications. Secondly,
we discuss the surface modifications and functionalization
issues that arise when designing elaborate MDDSs for future
clinical uses. Finally, we highlight recent progress in the
design and fabrication of MNPs, magnetic assemblies, and
magnetic microbubbles and liposomes as MDDSs for cancer
diagnosis and therapy. Recently, researchers have focused
on enhanced targeting efficacy and theranostics by applying
step-by-step sequential treatment, and by magnetically mod-
ulating dosing regimens, which are the current challenges
for clinical applications.

Keywords: magnetic nanoparticles, magnetic assembly, drug
delivery system, multimodality, theranostics

INTRODUCTION
Magnetic nanoparticles (MNPs), based on iron, cobalt,
nickel, or metal oxides, have attracted significant attention

owing to their intrinsic magnetic properties, which allow
them to be tracked by magnetic resonance imaging (MRI)
[1-4]. However, in the past few decades, the focus of labo-
ratory researchers has shifted from pure material synthesis
and characterization to the design of more comprehen-
sive but practical therapeutic delivery systems. In recent
years, integrated medical material for both diagnosis and
simultaneous treatment has also become very attractive for
doctors and patients because it can save a great deal of time
and money. Based on this requirement, MNPs, previously
used as a powerful diagnostic tool, are being considered
as theranostic delivery systems combining imaging agents
and effective therapeutic drugs [5-9].

Precise control parameters are pivotal in the synthesis
and surface functionalization of MNPs because they de-
termine the physicochemical properties, colloidal stability,
and biological behavior and/or fate of the magnetic drug
delivery systems (MDDSs).
MNPs, but superparamagnetic iron oxide nanoparticles
(SPIO NPs) such as magnetite (Fe;Os) and maghemite
(y-Fe,03) have great potential in nanomedicine. SPIO NPs
have been widely utilized owing to their biocompatibility

There is a large variety of

and “superparamagnetism”. When exposed to an external
magnetic field, they immediately reach saturation mag-
netization. When the external magnetic field is removed,
they are demagnetized and do not retain any magnetism.
SPIO NPs can be precisely directed to targeted tissue in
vivo by exploiting their rapid response to external magnetic
fields [10-15]. For specific pharmaceutical and biomedical
purposes, MNPs should be modified by the incorporation
of appropriate molecules on their surfaces. Owing to the
large surface area of nanomaterials and their activated
functional surface groups, it is very convenient to anchor a
targeting agent to the MNP surface. Moreover, the num-
ber of targeting molecules can be readily controlled. For
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example, biocompatible polymers such as polyethylene
glycol (PEG) can be linked to the surface of MNPs to
provide “stealth” properties while avoiding clearance by
the reticuloendothelial system (RES). Target proteins such
as herceptin can be conjugated on the surface of MNPs
to facilitate their active delivery to breast tumors [15-18].
The design and fabrication of elaborate and advanced
MNP-based DDSs is a promising approach to controlled
loading and accurate multistep delivery [19].

MNPs are currently used in nanomedicine in different
ways. For example, cancer chemotherapy requires the ad-
ministration of high doses of cytotoxic drugs owing to their
lack of specificity, which may lead to severe cytotoxic effects
[20]. To avoid such side effects, MDDSs could be designed
as smart drug delivery nanosystems to transport an effec-
tive drug dosage and specifically target tumor cells. The
in vivo behavior of the drug could be further controlled
by localizing it at the lesion site using an external mag-
netic field. Followed the application of another appropri-
ate stimulation, the loaded drugs/imaging agents can be
released locally [21-24]. In this review, we will summa-
rize recent progress in the design and fabrication of mul-
tifunctional MDDSs for biomedical applications. After a
brief introduction to the basic physicochemical and mag-
netic properties that are desirable for MDDSs, we will dis-
cuss the surface modification and functionalization issues
that arise when designing elaborate MDDSs for future clin-
ical applications. Finally, we will survey recent progress in
the design and fabrication of controllable MNPs, magnetic
assemblies, and magnetic microbubbles and liposomes for
use in multimodal imaging and targeted drug delivery.

PHYSICOCHEMICAL PROPERTIES OF
MAGNETIC NANOPARTICLES FOR DRUG
DELIVERY SYSTEMS

To better serve in vivo applications, researchers have de-
signed a series of MNPs with different combinations of
cores and surface modifications. Firstly, it is necessary to
have an overall understanding of how the physicochemical
characteristics of MNPs affect their stability, pharmacoki-
netics, biodistribution, endocytotic pathway, and biotoxi-
city. By characterizing how geometry, hydrodynamic size,
surface features, magnetism, and biotoxicity influence the
delivery process (Fig. 1), researchers are able to redesign
MDDSs with optimum therapeutic effects.

Hydrodynamic size and geometry

To achieve optimum efficacy, therapeutic agents must reach
sufficient doses to kill tumor cells, but at the same time,
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Figure 1 Physicochemical considerations of MNPs for drug delivery sys-
tems.

they should not adversely affect normal tissues. MNPs with
large volumes or surface areas could carry sufficient drug
molecules while avoiding clearance by RES. Therefore,
shape and size must be carefully considered and optimized
because they affect drug release and pharmacokinetics in
vivo [25-27].

Circulation in the blood and extravasation of nanoparti-
cles require the design of rational complex nanostructures
in vivo.
removed from vessels by renal clearance or liver uptake,
whereas large nanoparticles (>200nm) are removed by
the spleen or the RES [28,29]. Therefore, nanoparticles
between 20 and 200nm can be kept in blood circulation
because they can escape from the body’s scavengers [30].
Longer blood circulation time and higher plasma con-

Small nanoparticles (<5nm) might be rapidly

centration ensure that nanoparticles can penetrate the
epithelial cells in the vicinity of tumors and accumulate at
a higher concentration at the targets. Furthermore, MNP
drug delivery vehicles for theranostics, combined imaging,
and hyperthermia treatment are also dependent on the
magnetic properties of MNPs. Thus, the size of the MNPs
should be carefully considered when designing MDDSs for
in vivo applications.

Apart from the influence of MNP size, studies have
shown that the shape of the nanoparticles may dictate
the cellular fate of internalized MNPs [25]. Although few
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studies have focused on non-spherical nanoparticles to
date, research has proved the plausibility of this specu-
lation. Inhibition of phagocytosis by controlling shape
succeeds by minimizing regions of high length-normalized
curvature on the particles. Champion et al. [31] presented
the idea that particle geometry can be used to modulate the
phagocytosis of drug delivery particles, and demonstrated
a significant reduction in particle uptake that was solely
due to particle geometry. Worm-shaped nanoparticles, in
particular, meet this criterion and have the potential to
significantly affect drug delivery by avoiding phagocytosis
compared with traditional spherical particles. Cheng et al.
[32] demonstrated that the difference between uptakes of
spherical MNPs and rod-shaped MNPs by HeLa cells might
also be attributed to their morphological effects. Further-
more, MNPs with a high aspect ratio (from 100:1 to 500:1)
have also been evaluated in vivo. The results revealed
that constructs with a molecular weight of approximately
350-500 kDa were rapidly (half life, f;, ~ 6min) cleared
intact by glomerular filtration; these constructs were much
bigger than the molecular weight cutoff for glomerular
filtration (30-50 kDa). Although the in vivo bio-behaviors
of non-spherical MNPs may not be as predictable as we
imagined, these observations have allowed the design of
novel nanoscale-based shaped structures with unusual
pharmacologic and pharmacokinetic characteristics [29].

Surface features

Once MNPs, which are distinct antigenic substances, are
injected into the blood stream, and before they contact
cells, they are recognized by the body’s immune system.
Their movement and release are affected by various cells
and proteins in the blood. The MNP surface charge is re-
garded as one of the essential factors that directly relates to
the cellular uptake of MNPs [23,33-35]. A surface charge
is generated when most of the solid surface contacts water,
an aqueous solution, or another highly polar liquid [36].
Owing to Coulombic force, the charged surface attracts
solute ions of the opposite electric charge, resulting in the
accumulation of high concentrations of counter ions at
the interface. The Stern model postulates that a closely
adsorbed ion layer, called the Stern layer, forms at the sur-
face, and an outer layer, called the diffuse layer, also forms
in which attraction decreases as distance increases. The
potential of this double layer is called the zeta potential (¢),
and is a critical factor for the in vitro and in vivo stability of
the MNPs. The zeta potential can be calculated indirectly
by electrophoresis, photon correlation spectroscopy (PCS),
and electroacoustic methods. In the macroscopic system,

June 2017 | Vol.60 No.6

the effect of the surface charge between the solid-liquid
interface is usually less significant and is neglected. How-
ever, under the micro-/nanosystem, the surface charge
may have a critical effect on the behavior of the interface
and the stability of colloidal particles. Understanding the
structure of the electric double layer, and the effect of the
surface charge on the interface of MNPs, will help us to
more precisely control the surface charge to achieve the
properties demanded by a specific application [37].

The surface charge of MNPs depends on the material
coating them. For example, MNPs with a high number
of amine groups are expected to have a positive charge,
whereas hydroxyl and carboxyl groups usually confer a neg-
ative charge. Theoretically, because MNPs directly contact
the charged head groups of proteins on the cell surfaces,
positively charged MNPs are endocytosed by cells more
easily, because the electronic potential of the cell mem-
brane is negative. The experimental results produced by
many researchers have proved this view. Yang et al. [38]
determined that there was a greater concentration of pos-
itively charged (aminopropyltrimethoxysilane (APTMS)-
coated) MNPs inside cells than negatively charged (bare or
tetraethyl orthosilicate (TEOS)-coated) MNPs. In particu-
lar, large numbers of APTMS-coated MNPs widely adhered
to the immediate vicinity of the cell membrane, and several
particles even translocated to the cell nucleus. Sun et al.
[39] demonstrated that with a similar concentration, pos-
itively charged aminosilane-coated iron oxide nanoparti-
cles (AmS-IONPs) reduced the viability of neurons by 50%,
whereas negatively charged COOH-AmS-SPIOs reduced
viability by only 20%. Toxicity appears to be dependent
on the surface coating as opposed to the amount of iron
oxide present in the cell. However, there is still some dis-
sent among researchers regarding the zeta potential on the
MNPs. Prijic et al. [40] proved that the cellular uptake of
anionic silica-coated MNPs was three-fold greater than that
of cationic-modified nanoparticles. Negative citrate groups
increase the stability of MNPs and improve their affinity for
the cell membrane. These contradictory experimental re-
sults illustrate the complex identification and phagocytosis
process that occurs between cells and MNPs, in which sur-
face charge is only one of many influencing factors.

Magnetism

As a DDS, MNPs should be capable of accumulating in se-
lected regions to avoid adversely affecting the surrounding
or non-targeted normal tissues. Therefore, MNPs are de-
signed to have specific affinity for targeted regions through
external guidance or internal stimuli. One of the most
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common ways of accomplishing this is to utilize the mag-
netic properties of the MNPs. Because the magnetic mo-
ments of the atoms of ferromagnetic materials are non-
zero, each atom acts like a tiny permanent magnet. When
the atoms are clustered into a small region, and the mag-
netic moments are evenly arranged in parallel, the small
region is called the magnetic domain [41]. The existence
of magnetic domains is a consequence of minimizing en-
ergy. Assuming that a ferromagnetic bulk comprises mul-
tiple magnetic domains, the magnetic fields of the magnetic
domains are different and cancel each other out, resulting
in a zero-sum vector. Because the magnetic moment of the
whole object is zero, it cannot attract other magnetic mate-
rials. However, if the ferromagnetic material is exposed to
an external magnetic field, the magnetic domain starts to
move. If the direction of the magnetic domain is approx-
imately the same as the direction of the external magnetic
field, the magnetic domain expands; if the directions are
different, it contracts. At this point, if the magnetic field
is switched off, the magnetic domain may not return to
the original unmagnetized state. Therefore, when the fer-
romagnets are small enough, the nanoparticles randomly
change direction owing to thermal perturbation. When
there is no external magnetic field, they usually do not ex-
hibit magnetic properties. However, once an external mag-
netic field is applied, the MNPs become magnetized, a phe-
nomenon known as superparamagnetism [42].

In the absence of an external magnetic field, superpara-
magnetic materials do not retain residual magnetism; this
property could be exploited to avoid the tendency to ag-
glomerate in colloidal dispersions [43]. In fact, researchers
have demonstrated that reduced intrinsic ferromagnetism
ensures non-toxicity under physiological conditions. Fur-
thermore, driven by external magnetic fields, MDDSs can
provide controllable movement, accumulation, and release
within the organism [44]. For instance, some researchers
have found that magnetic composites can be localized upon
the application of an external magnetic field and can cir-
cumvent the human skin barrier, and even penetrate deep
subcutaneous tissue via follicular pathways [20].

Moreover, by responding to an external alternating mag-
netic field, MNPs can convert dissipated magnetic energy
into thermal energy. Thus, it is envisaged that MNPs will
be used for hyperthermia treatment of cancer or hyper-
thermia-controlled drug release [13,45-47]. MNPs gener-
ate heat under an alternating magnetic field as a result of
various pathways strongly correlated with their morpho-
logical, structural, and magnetic profiles. As shown in pre-
vious studies [48], magnetic hyperthermia efficiency may
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be enhanced by controlling the core-shell morphology of
mixed ferrites compared with their single-phase counter-
parts. More thorough research is required in order to ob-
tain better energy conversion efficacy.

Biotoxicity

When MNPs are engineered for use as biomedical DDSs,
their toxicity has also been a concern. As prerequisites
for clinical application, complete knowledge of the toxico-
logical properties and a risk assessment of the MNPs are
mandatory to ensure safety and minimize potential health
hazards.

At present, MDDSs are commonly designed with a
core of magnetic nanomaterials and a shell of polymer
materials or other inorganic metal compounds. Methods
for in vivo detection of MNPs are mainly based on the
determination of iron content using elemental analysis of
collected blood [49]. However, because most biomedical
MNPs are iron-based [50], the quantitative determina-
tion of the iron content to obtain an understanding of
the pharmacokinetics of the MNPs is complicated by
the presence of endogenous iron. However, some new
technologies such as alternating current magnetic suscep-
tibility measurements facilitate differentiation between
the endogenous iron present in the tissues in the form of
ferritin and the iron storage protein from MNPs [51]. Ruiz
et al. [51] demonstrated that meso-2,3-dimercaptosuccinic
acid (DMSA)-coated iron oxide nanoparticles are safe for
biomedical applications. They administered the nanopar-
ticles to rats at dose levels of 2.5, 7.5, and 15mg Fe/kg body
weight and monitored their body weight, food consump-
tion, gross pathology, and the bio-distribution of iron in
their spleens and livers. Many studies have compared the
toxicity of different magnetic nanomaterials during cell
coculture [52-56]. Park et al. [55] proved that after the
cells were exposed to 50ugmL™ of bare magnetite and
maghemite for 24h, Fe;O, decreased cell viability to 11.0
+ 1.0 % of the control level. Adenosine monophosphate
(ATP) production decreased to 9.5 + 0.6 % of the control
level. The levels of reactive oxygen species, nitric oxide,
and pro-inflammatory cytokines were elevated. Damage
to the mitochondria and the endoplasmic reticulum, and
downregulation of mitochondrial function and transcrip-
tion-related genes were also higher in the cells. However,
although y-Fe,O; produced the same results, the degree of
the effect was lower.

Therefore, to reduce toxicity, the iron core is generally
coated with biocompatible materials such as dextran,
DMSA, PEG, or polystyrene [57-59], which will be de-
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scribed in detail in the next section. Researchers even hope
to use biocompatible modifications to avoid unnecessary
tissue aggregation and cell endocytosis, thereby ensuring
the biosafety of the MDDS. For example, dextran-sta-
bilized MNPs do not induce oxidative stress-mediated
toxicological effects, nor do they alter physiological pro-
cesses or behaviors, or visible pathological lesions [60].
Peeples et al. [61] showed that coating Fe;O, nanopar-
ticles with (3-aminopropyl) triethoxysilane and citric
acid caused no significant decrease in cell viability up to
25pgmL™" compared with uncoated Fe;O4 when incubated
with lung epithelial cells (RL 65-Rat source). The exper-
imental analysis of the effects of DMSA-modified MNPs
on higher concentrations and longer incubation times also
showed that DMSA-MNPs have little toxicity in this cell
line. There is no notable influence on cell proliferation. It
was further proved that treatment with various concentra-
tions of DMSA-MNPs led to an insignificant decrease in
glutathione (GSH) levels [62]. These results confirm the
potential of surface coated MNPs for clinical use.

In addition to directly designing iron nanoparticles as
drug carriers, the magnetic responsive capability of MNPs
is often used to affect drug release under external mag-
netic field stimulation. Therefore, a combination of MNPs
with static magnetic field (SMF), or alternating magnetic
field may cause potential negative effects for clinical appli-
cations. Unfortunately, there are very few reports on this
problem. Bae et al. [63] reported that under conditions
that satisfied the conventional cytotoxicity assessment of
0.5mmol L' SPIO, clinical doses combined with 0.4T SMF
exposure exert synergistic adverse effects such as reduced
cell viability, apoptosis, and cell cycle aberrations on hep-
atocytes in vitro and in vivo. Moreover, long-term moni-
toring showed a significant increase in multinuclear giant
cells in the cells concomitantly treated with SPIO and SMF
compared with the control. Therefore, further studies on
the molecular mechanisms underlying cellular responses
to both MNPs and magnetic field interactions are neces-
sary for a comprehensive assessment and a thorough un-
derstanding of the systemic effects on the living body.

SURFACE FUNCTIONALIZATION OF
MAGNETIC NANOPARTICLES FOR IN
VIVO TARGETING

To improve stability, reduce biotoxicity, and achieve ex-
tended circulation under physiological conditions, MNPs
need to be functionalized by encapsulating a variety of in-
organic or organic materials such as polymers, lipids, and
proteins, or further conjugating functional moieties to their
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coatings such as targeting ligands, therapeutic peptides/an-
tibodies, fluorescent dyes, or gene agents. Table 1 summa-
rizes common organic and inorganic surface modifications
for better in vivo results. The surface modifications can
provide protection for the magnetic core, preventing ag-
gregation by screening the magnetic dipolar attraction be-
tween the MNPs. They ensure an ideal magnetic platform
for further drug loading and retain chemical inertness with
normal tissues in biological systems.

Organic coating materials

Polymer coating materials

Improving the targeting efficiency of MNPs while reduc-
ing their negative impact in vivo has always been a chal-
lenge for MDDS applications. To solve this problem, MNPs
for in vivo use require a coating that: (1) reduces MNP ag-
gregation; (2) extends the circulation time of the MNPs in
vivo; (3) avoids nonspecific intercellular interactions and
reduces cytotoxicity; and (4) provides a platform for the
conjugation of drugs and targeting molecules. To achieve
these coating functions, various polymers including PEG,
poly(ethyleneimine) (PEI), chitosan, polylactic acid (PLA),
and dextran have been investigated.

PEG has several advantages, such as low toxicity, no
antigenicity, good amphiphilicity and biocompatibility,
and thus has been used clinically as an excipient in Food
and Drug Administration (FDA)-approved pharmaceuti-
cal formulations [74]. PEG-coated (or PEGylated) MNPs
can usually avoid recognition by the RES, thereby improv-
ing the biocompatibility of MNPs. PEG can be further
combined with certain proteins, targeting ligands, or
therapeutic agents. Even by covalently binding to the
other end of PEG, such magnetic complexes can achieve
both efficient surface coating and multi-functionalization.
Yuan et al. [75] prepared well-defined PEGylated MNPs
(PEG-Fe;0y4) with excellent dispersibility and dissolvabil-
ity under physiological conditions for the photothermal
therapy of cancer cells via a facile one-pot solvothermal
method. Various hybrid MNPs coated with PEG or car-
boxylated PEG [76], such as PEGylated iron oxide-gold
core-shell nanoparticles [77], combine a variety of specific
ligands for applications in diagnostic magnetic particle
imaging (MPI) [78], MRI [79], and the treatment of many
diseases.

Chitosan, which is a partially acetylated glucosamine
(poly(1->4)-2-amino-2-deoxy-d-glucan) [80], was firstly
synthesized in 1859. This natural polymer has bio-func-
tionality, biodegradability, biocompatibility, bioactivity,
and other excellent properties, and has attracted attention
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Table 1 Materials used to modify the surface of MNPs for in vivo applications

Modification method Materials Illustration Reference
End-grafted PEG . + AN » * [18]
Chitosan [64]
Dextran [65]
Surface adsorption
" o+ > @ U
PVP [67]
Sulfo-SMCC x ;\,&
-NH, @-H, €y ”\”/OOA A [38)
Biomarker | ==SH ¢
Organic materials
o] I o]
A~ Biomarker P
Conjugation -SH .— SH & =) . S\%il [68]
\N o o
0 EDC-NHS Q
-COOH .)k ] .*N/ [69]
o Biomarker | — NH, H
RBC membrane [70]
Biomimicry
PLT membrane Cell [71]
membrane
Au [72]
Inorganic materials Conjugation Ag . ‘ (73]
Si SiO, Au Ag [70]

Note: PEG = polyethylene glycol; PEI = poly(ethyleneimine); PVP = polyvinylpyrrolidone; RBC = red blood cell; PLT = platelets.

in the fields of chemistry and biology. Chitosan-coated
MNPs contain a core of magnetic material, usually a mix-
ture of Fe;04 and y-Fe;O; [81], or hybrid MNPs (nickel-fer-
rite) [82], with the drug loaded on the surface for targeted,
controlled release. Dorniani et al. [83] designed a new drug
nanocarrier by coating chitosan and perindopril erbumine
on the surface of MNPs using a simple coating method.
Such chitosan-modified MDDSs have minimal toxicity. In
addition, chitosan has reactive groups such as -OH and
-NH,, which can be used for further integration of MNPs
with targeting, imaging, and therapeutic agents.

PEI is a hydrophilic cationic polymer with high affinity
for DNA, proteins, and cells [84]. It is often used in con-
junction with PEG for coating MNPs to enhance colloidal
stability and reduce biotoxicity. Schweiger et al. [85] de-
veloped a novel magnetic carrier system based on the as-
sembly of PEG-PEI and MNPs to develop y-Fe,O3 PEG-PEI
particle systems. Such nanodelivery systems have good
long-term colloidal stability and low toxicity in the pres-
ence of PEG groups on the polymer backbone, and have
great potential for biomedical applications.

476

Dextran is a water-soluble polysaccharide that is mainly
composed of a-d-(1>6)-linked glucose units with some
a-d-(1-3)-linked units [57]. As a natural polysaccharide,
dextran is widely used in the pharmaceutical field and
has attracted much attention [86]. It has a strong affinity
for the hydroxyl groups on the surface of MNPs. Dex-
tran-modified MNPs can increase the half-life of the drug
under physiological conditions. Many dextran-coated
MNPs have been prepared for use as MRI contrast agents
and targeted drug delivery carriers because they have good
biocompatibility [58,59,87,88]. Dextran can also be coated
on hybrid MNPs. The dextran-coated gold MNPs synthe-
sized by Li et al. [89] had enhanced colloidal stability and
could be used for the controlled release of doxorubicin
(DOX).

A variety of other polymers or copolymers are also used
for the encapsulation of MNPs, including polyvinyl alco-
hol (PVA) [90,91], polylactic acid/poly(lactic-co-glycolic
acid) (PLA/PLGA) [92], and polyvinylpyrrolidone (PVP)
[93-96]. These polymers have different properties and
can influence the properties of MNPs, such as the surface
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charge, function, dispersibility, and magnetic properties,
in different ways. Modified MNPs can successfully endure
the aggregation of particles under physiological conditions
and retain a good crystalline structure and magnetic prop-
erties, which make them ideal for controlled drug delivery
in tumor therapy.

Bioconjugation coating materials

Coating strategies using polymers such as PEG and PLA
to improve the surface properties of MNPs have been
highly successful at solving the biocompatibility prob-
lem. The further bioconjugation of functional structures
on the surface of MNPs has been reported to enhance
targeting capability. Wang et al. [97] designed (3-amino-
propyDtriethoxysilane-modified FeCo MNPs, which were
subsequently activated by glutaraldehyde, leading to the
successful bioconjugation of proteins (streptavidin, preg-
nancy-associated plasma protein A antibody, and nectin-4
antibody) with the aldehyde groups on the nanoparticle
surfaces. Protein-FeCo conjugates have much higher sat-
uration magnetization than commercially available iron
oxide nanoparticles. In addition, some protein drugs/genes
can also be used to modify the surface of MNPs to achieve
the targeted delivery of biological drugs. Yang et al. [98]
developed low-toxicity magnetic nanocarriers with a shell
of poly(aniline-co-N-(1-one-butyric acid) aniline) over a
FesO, MNP core to carry recombinant tissue plasminogen
activator (rtPA) for targeted thrombolysis treatment.

Natural biological coating materials

The modulation of immunocompatibility by the chemical
modifications described above is limited owing to exoge-
nous toxicity. Recent studies on the immunological re-
sponse of artificial material-modified nanoparticles have
prompted researchers to pursue alternatives. A cell mem-
brane-based top-down nanoparticle modification strategy
has proved successful. Rao et al. [99] made use of natural
red blood cell (RBC) membranes to camouflage the surface
of Fe;04nanoparticles for reducing RES uptake. The com-
bination of MNPs and natural cell membranes embodies
a biomimetic nanocoating strategy for designing new bio-
logical magnetic nanomaterials. Owing to their self-recog-
nition function, autologous cells that mimic the MDDS
strategy have a great advantage in biomedical applications.
Mimicking MNPs with other types of autologous cell mem-
branes such as those of leukocytes, platelets, cancer cells,
hepatocytes, and stem cells is a current research hot spot.

Inorganic coating materials
Owing to the combination of the magnetic core and the
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functionalized shell, hybrid MNPs with a core-shell struc-
ture have a wide range of applications [100,101]. Many in-
organic materials such as SiO,, or precious metals such as
gold, silver, or platinum, are used for the nuclei or shells of
MNPs. These coated hybrid MNPs have enhanced stability,
improved biocompatibility, and surface chemical, biologi-
cal, or catalytic interfacial reactivity.

Silica-coated MNPs

Recently, core-shell structured silica/MNP composites
have been studied extensively [102-104]. Silica-coated
MNPs can be used for MRI imaging and hyperthermia
treatment. The preparation of silica-coated MNPs with
good physical and chemical properties is a prerequisite for
subsequent use. Rho et al. [105] described a facile two-step
method for synthesizing monodispersed, silica-coated
MNPs.  Oleate-MNPs were successfully converted to
polyvinylpyrrolidone-MNPs (PVP-MNPs), which were
then coated with silica using a modified version of the
Stober method. More than 95% of the MNPs were indi-
vidually coated with a silica shell without non-magnetic
core silica nanoparticles, which were stable for more than
three months. Studies on silica-coated MNPs indicate that
these particles have the potential for use in biomedical
applications. Owing to the presence of MNP cores, sil-
ica-coated MNPs can be used for hyperthermia treatment.
Igbal et al. [102] prepared silica-coated manganese ferrite
nanoparticles for hyperthermia applications. Silica-coated
manganese ferrite nanoparticles can be used to heat aque-
ous solutions to 42°C, and are therefore useful for magnetic
hyperthermia treatment. Compared with research into
organic coating materials such as PEG, PEI, and lipids,
there has been little research into silica as an inorganic
coating material for MNPs until recently. Silica-coated
MNPs may be useful in various biomedical fields such as
diagnostics and therapeutic treatments because they are
biocompatible, stable, non-toxic, easily functionalized,
and have excellent magnetic properties.

Gold-coated MNPs

Gold (Au)-coated MNPs with a core-shell structure can
be used for MRI, magnetically targeted drug delivery,
surface-enhanced Raman scattering (SERS), and catalysis.
Owing to their unique properties, gold-coated magnetic
composites can be used for both diagnosis and thera-
peutics. Shen et al. [106] recently reported the design of
gold-coated Fe;O,4 nanoparticles. The nanoparticles were
functionalized by the self-assembly of a single layer of
azide groups on the surface, which could be conjugated
with folate molecules via copper (I)-catalyzed azide-alkyne
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cycloaddition. The experimental results showed that the
nanoparticles could be used for the non-immunogenic
targeting of cancer cells. Owing to the multifunctional
modification of Au-coated MNPs, multimodal imaging
and photothermal therapy can be envisaged in the future.
In addition to FesO,, the core of gold-coated MNPs can
be synthesized from other hybrid materials.
[107] reported a novel method for preparing a
FePtAu core-shell structure using solution phase chemistry
combined with solvothermal annealing, which showed
great promise for various optical, sensing, and biomedi-
cal applications. Wang et al. [108] designed Au-coated
MnFe,;O4 nanoparticles, which were first modified with

Poudyal
et al.

a uniform PEI layer (2nm). The negatively charged Au
seeds were then adsorbed onto the surface of the MnFe,0,
nanoparticles via electrostatic interaction during the for-
mation of the Au shell. Synthetic Au-coated hybrid MNPs
have useful properties such as strong magnetic response,
good SERS activity, enhanced stability, and biofunctional-
ization. Moreover, the thickness of the gold layer can be
varied as required to achieve different properties, making
the nanoparticles potentially useful for a broad range of
applications in diagnosis and therapeutics.

Silver-coated MNPs

When silver (Ag) is combined with MNPs, silver-MNP
composites with both optical and magnetic properties are
obtained. The biocompatibility of the nanoparticles can
be improved. Chen et al. [109] reported the one-pot syn-
thesis of Ag-Fe,Os hybrid nanoparticles by the sequential
addition of precursor chemicals. It is possible to adjust
the hybrid structure from a core-shell to a heteromeric
geometry by changing the reaction temperature. Owing
to the slow diffusion of silver ions out of the Fe,Os shell,
the hybrid material has an enhanced magnetic-targeting,
bactericidal function. Zhai et al. [27] were the first to
describe a solvothermal method whereby FesO,4 grains
were distributed directly onto the surface of Ag seeds.
They constructed Ag-Fe;O,4 hybrid MNPs with a core-shell
structure, which had both plasmonic and significant su-
perparamagnetic properties. Silver-iron hybrid MNPs can
also be synthesized by the in situ reaction of precursor
chemicals. Bian et al. [110] prepared monodispersed
Ag/polyaniline/Fe;O, nanoparticles with an average size
of approximately 50nm via in situ reduction between
emeraldine PANI/Fe;O, and silver nitrate. Magnetite-sil-
ver hybrid nanoparticles can easily be tuned to a core-shell
or heteromer structure [25], and show great potential for
application in the fields of tumor treatment using magnetic
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hyperthermia, SERS, antibacterial applications, and optical
imaging.

MAGNETIC NANOPARTICLES AND
ASSEMBLED COMPOSITES AS DRUG
DELIVERY SYSTEMS FOR THERANOSTICS

The inability of traditional drug delivery carriers to specifi-
cally accumulate at the target site and escape the biological
barriers reduces drug efficiency and stability, and can even
lead to serious side-effects. Therefore, the use of biocom-
patible carriers to carry therapeutic drugs with improved
pharmacokinetic properties has attracted the attention of
researchers. MNP-assembled MDDSs have been regarded
as an attractive alternative for delivering drugs owing to
their low toxicity, biocompatibility, and controllable release
characteristics. Although it is well known that MNPs can
be used as MRI contrast agents for tumor imaging, recent
multifunctional MDDSs have extended the potential uses
of MNPs by combining multimodal imaging with targeted
drug delivery; the MNPs can be loaded with radiotherapy,
chemotherapy, anti-inflammatory, or anticancer drugs.

Magnetic nanoparticles themselves as a drug delivery system
In the early stages of MNP development, researchers re-
garded MNPs as chemically inert materials, and they have
mainly been used as MRI contrast-enhancing agents and
spontaneous DDSs. However, subsequent studies have re-
vealed that MNPs have pH-dependent peroxidase and cata-
lase activities like those of certain enzymes. Chen et al.
[111,112] reported that iron oxide nanoparticles can cat-
alyze H,O, to produce the hydroxyl radical (-OH) under
acidic conditions, and the hydroxyl radical is then able to
oxidize a variety of organic molecules. That is, the MNPs
have peroxidase-like activity. Under neutral conditions,
iron oxide nanoparticles directly catalyze the degradation
of hydrogen peroxide into H,O and O, (Fig. 2); that is,
they have hydrogen peroxidase-like enzyme activity. Such
pH-dependent enzyme activity of MNPs has prompted new
lines of investigation into the use of MNPs themselves as
“drugs” for the treatment of disease.

An attempt has been made to exploit the enzymatic
activities of MNPs to treat certain diseases. Xiong et al.
[113] reported the preparation of the DMSA-coated Fe;Os
MNPs (Fe,O;@DMSA), which have a spherical core with
an average diameter of 9.8nm, using a coprecipitation
method. Importantly, Fe,O;@DMSA showed the potential
for drug-like activity, preventing cardiac arrest in a rat
coronary artery ligature model. The size of the myocardial
infarction and the biochemical indices further demon-
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Figure 2 Schematic illustration of peroxidase- and hydrogen peroxidase-
like enzyme activities of iron oxide nanoparticles, modified from reference
[111], Copyright 2012, American Chemical Society.

strated that Fe;Os@DMSA nanoparticles can successfully
protect the myocardium from ischemia injury in animals.
Further, it is found that the MIM, a multifunctional scaf-
fold protein to regulate both actin dynamics and membrane
dynamics, may play a positive role in the MNPs uptake
process. Therefore, the silence of MIM is important for
avoiding the endocytosis process of MNPs by RAW 264.7,
which may enhance the MNPs accumulation in target sites
[114].

The discovery of the mimetic enzyme activity of MNPs
has prompted researchers to explore new strategies for their
synthesis, laying the foundation for further MNP applica-
tions. There have been some reports that naturally occur-
ring ferritin is equivalent to a storage compartment for iron
in animal and plant cells [115]. Zhang et al. [116] devised
a strategy to use ferritin as a template for the synthesis of
small, Prussian blue-modified ferritin nanoparticles (PB-Ft
NPs), which retain the biological characteristics of ferritin.
Their results showed that the PB-Ft NPs have a mean size
of 22.8 nm, and retain specificity and peroxidase-like activ-
ity. Therefore, PB-Ft NPs can be used as biocatalytic and
biometric tools. However, contrary to widespread specu-
lation, the electron spin resonance test results show that
PB-Ft NPs cannot catalyze H,O, to produce -OH. On the
contrary, PB-Ft NPs clean up harmful -OH, which indi-
cates that PB-Ft NPs do not act as peroxidases through the
Fenton reaction. Further experimental results reported by
Zhang et al. [117] show that PB-Ft NPs exert a catalytic
function through a charge transfer mechanism. Moreover,
PB-Ft NPs can effectively quench O, and H,O; in several
cell models, i.e., PB-Ft NPs act as nanoscale reactive oxygen
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species (ROS) scavengers that effectively relieve ROS-in-
duced cell damage. However, the detailed cellular mecha-
nism underlying this property of PB-Ft NPs is unclear and
requires further investigation. Moreover, Yang et al. [118]
have developed a new strategy of ultrasound and MR dual
modal imaging, which has a complementary advantage that
enables simultaneous treatment and multimodal monitor-
ing based on PB-Ft NPs. PB-Ft NPs are able to catalyze the
decomposition of H,O, into oxygen (O;) molecules at neu-
tral pH (pH 7.4). This chemical reaction produces an O,
bubble-forming molecule that can be used as an ultrasound
contrast agent to enhance ultrasound imaging. Thus, PB-
NPs provide a multi-functional nanoscale platform; they
can be used for dual-mode imaging and as scavengers to
reduce oxidative stress in vivo.

The results mentioned above suggest that the biological
activity of MNPs may be very complex. Some researchers
have reported that MNPs have enzymatic activity that re-
sembles the effects of certain drugs, and can also promote
the osteogenic differentiation of human bone marrow mes-
enchymal stem cells (hBMSCs) to modulate stem cell fate
for promoting tissue repair [119,120]. Wang et al. [121]
analyzed the gene expression of hBMSCs that had been in-
cubated with MNPs at an appropriate concentration using
a gene chip assay and bioinformatics analysis. They found
that the classical mitogen-activated protein kinase (MAPK)
signaling pathway was activated by NPs. Thus, the down-
stream gene of the pathway is regulated to promote os-
teogenic differentiation. This study elucidates the molec-
ular basis of how MNPs affect hBMSCs, which may have
significant implications for stem cell applications in regen-
erative medicine.

Magnetic nanoparticle assembly as a drug delivery system

Employing MNPs as a DDS is another common use of
MNPs. MNPs are able to transport anticancer drugs into
tumor cells without damaging healthy cells. Compared
with other nanodrug delivery systems such as polymer
nanoparticles, liposomes, and micelles, MDDSs have
better MRI performance, which may make it possible to
dynamically monitor the drug distribution in vivo. Fur-
thermore, MNPs are biodegradable, which greatly benefits
their biomedical applicability. However, the efficacy of the
MNPs as drug nanocarriers is often counteracted by the
rapid conditioning and subsequent plasma clearance of the
tissue macrophages of the RES before the nanoparticles
reach the target tissue or cell [122]. Although we have de-
veloped many ways of loading MNPs with drugs, magnetic
carriers may perform poorly when a large drug release
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at the target area is required. Smaller particles provide a
larger surface area and are therefore more suitable for drug
loading, but this comes at the expense of reduced mag-
netic properties. To solve this problem, Xiong et al. [123]
assembled four separate oleic acid-terminated iron oxide
nanotubes and oleic acid-modified PEG molecules to form
clusters (Fig. 3). These nanomagnetic clusters maintained
high paclitaxel (PTX) drug loading, high magnetism, and
rapid and extended release behavior. Compared with the
same dose of free PTX, the PTX magnetic nanoassemblies
had greater antitumor activity in vivo. Simultaneously,
with the increase of tumor cell uptake, the magnetic
nanoassemblies provided tumor imaging by MRI. Benefit-
ing from the high drug loading capacity and high magnetic
characteristics, such magnetic nanoassembled DDSs can
maximize the advantages of nanomaterials and minimize
their side-effects.

Moreover, biodegradable and biocompatible polymer-
assembled MNP structures have been fabricated based
on their controlled drug release characteristics, and have
been used in biomedical imaging, cell labeling, and ther-
apy [124]. Yang et al. [125] found that MNP-embedded
PLA exhibited controlled drug release that was depen-
dent on the MNP assembly concentration in the polymer.
PLA-MNP material with a concentration of 20% MNPs in
the composite increased the drug release rate by more than
200 times while maintaining excellent controlled drug
release. It was also found that the interaction between

Fe,0,@0A NCs PTX e

o VN

{AZ-PEG

Figure 3 Schematic representation and structure of Rubik’s cube-like
PTX magnetic nanoassemblies, modified from reference [119], Copyright
2016, Elsevier.
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MNPs and various crystal PLA domains on the surface of
the PLA-nanoparticle composites affected the behavior of
the PLA during hydrolysis.

Magnetic microbubbles and liposomes as multimodality
theranostic delivery systems

Apart from the direct use of MNPs as a drug adsorption
platform for in vivo delivery, many authors have reported
microcapsule structures that encapsulate MNPs in organic
or inorganic shells [126], where the microcapsules act as
an effective platform for the simultaneous delivery of en-
capsulated drugs and MNPs. Drugs or other biologically
active substances can be embedded in the internal area of
the microcapsules, thereby preventing the drugs from con-
tacting healthy tissue before reaching the disease site or the
specific tissue. The shell structure of the microcapsules is
then changed by the application of an external magnetic
field and/or physiological microenvironment triggers. This
triggers the release of the drug from the microcapsules.
The structure could be called a “smart” magnetic nanode-
vice owing to the precision by which the drug release is
achieved to optimal effect. Yang et al. [127] designed a
micro-container embedded with Fe;O,4 nanoparticles. Ni-
tric oxide precursor drugs and l-arginine were also encap-
sulated in the core of the micro-container. Under the stim-
ulation of an alternating magnetic field, the permeability
of microcapsule membrane was changed, and H,O,, which
commonly resides in the inflammatory region, is released
into the interior resulting in a bubble microreactor forma-
tion in situ. The reaction, product nitrogen oxide (NO), is
beneficial because it alleviates tissue inflammation and acts
as an ultrasound contrast agent to monitor targeted tissue
with ultrasound imaging. Thus, the magnetic field-trig-
gered NO microbubbles can be utilized like a very sim-
ple, but important and effective magnetic nanodevice to
achieve the diagnostic and therapeutic goal.

Subsequently, further experiments were designed to
investigate the use of magnetic microbubbles with ther-
apeutic capabilities.  After binding to tumor-targeted
biomolecules, the magnetic microbubbles can be devel-
oped as molecularly targeted imaging DDSs. In one ex-
periment, arginine-glycine-aspartic acid-L-tumor necrosis
factor-related apoptosis-inducing ligand (RGD-L-TRAIL),
an antitumor-targeting fusion protein, was precisely con-
jugated to the surface of the MNP-coated microbubbles to
construct RGD molecularly targeted magnetic microbub-
bles (RGD-L-TRAIL@MMBs) [128]. Owing to the highly
specific accumulation of RGD-L-TRAIL@MMBs in the
tumor, accurate diagnostic information about the tumor
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can be obtained by dual ultrasound and MRI (Fig. 4).
After imaging, the TRAIL molecules act as anticancer
agents and gain access to the interior of the cancer cells
by nanoparticle- and RGD-mediated endocytosis to effec-
tively induce tumor cell apoptosis. It is expected that a
proper MNP-based microbubble DDS could be developed
as a molecularly targeted multimodality imaging delivery
system with the addition of chemotherapeutic cargoes to
improve cancer diagnosis and therapy.

Finally, taking into account the superior biocompatibil-
ity of liposomes, magnetic liposomes are also frequently
developed and applied. Liposomes are artificial phospho-
lipid vesicles with a mean diameter of 50-1000nm. Both
water-soluble and water-insoluble drugs/nanoparticles can
be loaded into the inner core and hydrophobic bilayer, re-
spectively, forming a promising DDS [129]. When the hy-
drophobic or hydrophilic MNPs are loaded into the lipo-
some formulation, the fabricated magnetic liposome de-
livery systems can be remotely controlled via an external
magnetic field. Traditionally, magnetic liposomes make ex-
cellent MR contrast agents. In particular, the MR of mag-
netic liposomes simultaneously facilitates image guidance
of the liposomal drug delivery in the specific areas in vivo.
An innovative class of magnetic hyperthermia and smart
controllable liposomes have been developed. Sharifabad et
al. [130] prepared liposome-capped core-shell mesoporous
silica-coated SPIOs called “magnetic protocells” as novel
nanocomposites, and used them for loading the anticancer
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Figure 4 Schematic diagram showing the enhanced targeting strategy of
RGD-L-TRAIL@MMB:s for tumor diagnostics and therapy.
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drug DOX. The structure was adjusted to maintain a tem-
perature of 43°C with a concentration of 10mgmL™ in a
variable magnetic field with a maximum strength of 200
Gauss and a frequency of 406kHz. A slow but linear in-
crease in DOX release over time at 43°C was demonstrated
to be favorable for drug delivery applications without
affecting the structure of the capped liposomes. Liu et
al. [131] designed a stimuli-responsive anethole dithio-
lethione (ADT)-loaded magnetic nanoliposome (AML)
delivery system, which consists of ADT and a hydrogen
sulfide (H,S) pro-drug doped in the lipid bilayer, and su-
perparamagnetic nanoparticles encapsulated inside. For in
vivo applications, after preferentially targeting the tumor
tissue when spatiotemporally navigated by an external
magnetic field, the nanoscale AMLs can intratumorally
convert to micro-sized H,S bubbles. This dynamic process
can be monitored by magnetic resonance and ultrasound
dual modal imaging. Importantly, the intratumoral-gen-
erated H,S bubbles visualized by real-time ultrasound
imaging can first ablate the tumor tissue when exposed
to higher acoustic intensity; then as gasotransmitters,
intratumoral-generated high-concentration H,S molecules
can diffuse into the inner tumor regions where they have a
further synergistic antitumor effect. The 7-day follow-up
observations for tumor-bearing mice indicated that AMLs
and magnetic field treatment greatly improved the inhibi-
tion of tumor growth.

Very recently, a cell membrane-mimicking lipid com-
position presented as a novel surface mask for MNPs has
been shown to confer various biological benefits. It is re-
ported that platelet (PLT) membrane-coated Fe;O4 MNPs,
which may inherit prolonged blood circulation and cancer
targeting capabilities from the PLT membranes, are a ten-
tative design for personal therapy [71]. The T,-weighted
relaxation rate value (R;) of the PLT-MNPs suggests that
the surface membrane coating does not compromise MRI
functionality. The in vivo MRI images confirmed that the
PLT-MNPs have better tumor accumulation behavior than
uncoated MNPs. Tumor photothermal therapy with PLT-
MNPs exhibited tumor temperature increases from 34.4 to
56.1°C within 5min. In contrast, the tumor temperatures
of MNP and RBC-MNP groups in mice reached only 49.5
and 53.6°C, respectively.

CONCLUSIONS

MNPs have emerged as excellent multifunctional nanoplat-
forms for the construction of smart DDSs. Numer-
ous designs have been made in this field over the last
10years, reflecting an exponentially growing number of
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publications. A search of the Web of Science that stipulated
“magnetic nanoparticles” and “drug delivery systems”
as two keywords produced 805 hits, and the total cited
frequency was 21,184 hits. Moreover, 81.86 % of the pub-
lications were original articles, 17.89% were reviews, and
4.48% were reports of proceedings, conference abstracts,
and editorials. Furthermore, 27.70% of the publications
were from the United States, 23.85% from China, and
6.83% from South Korea. The contributions from China
are increasing sharply year on year.

With a gradual increase in clinical requirements, al-
though most DDSs, including MNPs, are in mutually
competitive development stages, MDDSs have become
one of the most promising DDSs. MNPs with suitable
physicochemical properties, modified with biocompatible
polymeric, lipid, or metal shells, are applicable to a wide
variety of biomedical fields, both diagnostic and thera-
peutic. As discussed, the size, charge, and surface features
of MNPs could strongly influence their biodistribution,
biotoxicity, and magnetism. Administrated MDDSs, utiliz-
ing external magnetic fields, can be transported to targeted
diseased tissues, where the drugs can be released in a con-
trollable manner. As a result of less drug cargo dosage and
precise delivery, MDDSs do not exhibit serious side-ef-
fects. Even temperature increases arising from exposure
to an alternating magnetic field have been investigated for
tumor hyperthermia treatment. A number of positive in
vivo results for MDDS suggest that work should progress
from the laboratory to clinical trials.

However, before these MDDSs can be used commer-
cially as diagnostic and therapeutic products, numerous
challenges must be overcome. First, the in vivo metabolic
processes in which these elaborate MDDSs are involved
after injection are not very clear. To date, in vivo studies
on the fate of iron are scarce, and macroscopic analysis
of the quality distribution of MNPs in organs cannot
explain the different mechanisms underlying specific cell
phagocytosis, metabolism, degradation, and cell death.
More emphasis should be put on detailed investigations
of the in vivo properties of MNPs if these nanoparticles
are to enter clinical trials. Continuing from this unsolved
problem, more experimental data are needed for a com-
prehensive understanding of what happens to the MDDSs
in the long term. The toxicity of the MNPs is complex
and depends on their size, geometry, surface features, and
magnetism. Thus, from a regulatory standpoint, the in
vivo safety of MNPs needs to be evaluated more carefully.
Furthermore, it is known that the functions of MDDSs and
the property of external magnetic fields are inseparable.
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However, owing to the restrictions imposed by physical
conditions and the differences between patients with dif-
ferent diseases, external magnetic fields should be carefully
modulated for effective treatment. Until now, few studies
have explored the influence of magnetic fields on MDDSs.
Despite the numerous challenges faced when exploring
specific favorable clinical applications, the in vitro and in
vivo experimental results are encouraging. Any efforts that
improve the properties of MDDSs in vivo and reduce their
clinical cost will accelerate the development of magnetic
theranostic delivery systems in the future.
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