
Superlattices and Microstructures 44 (2008) 721–727

Contents lists available at ScienceDirect

Superlattices and Microstructures

journal homepage: www.elsevier.com/locate/superlattices

Simulation of the electrical characteristics of a
one-dimensional quantum dot array
Wei Wang a,b,∗, Jianhui Liao a, Jianping Sun c, Ning Gu a
a State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University,
Nanjing 210096, China
b College of Opto-electronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
c Department of Electrical Engineering and Computer Science, The University of Michigan, USA

a r t i c l e i n f o

Article history:
Received 1 November 2007
Received in revised form
29 August 2008
Accepted 10 September 2008
Available online 26 October 2008

Keywords:
Device simulation
Non-equilibrium Green’s functions
One-dimensional quantum dot array
Quantum transport model
Linear aggregation technique

a b s t r a c t

A quantum dot array, consisting of Au dots, was prepared by
the linear aggregation technique and assembled between two
electrodes. We study the voltage–current characteristic of the
quantum dot array, using a Non-Equilibrium Green’s Function
(NEGF) model based on the Keldysh formalism. The results of our
simulation and experimental data are compared. The simulated
voltage–current curve is a reasonable fit with the measured data.
It shows that the present model can be used to study quantum
dot arrays. Furthermore, our results indicate that the electrical
characteristics of anAudot array are directly related to the coupling
parameters.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of miniaturization to the nanoscale dimensions of electronic devices,
transport properties of quantum-dot nanostructures have been extensively studied in recent years,
due to their unique quantum characteristics. Quantum dot array systems present interesting
quantization phenomena, such as Coulomb blockade, Coulomb staircase, and non-equilibrium Kondo
effect [1]. Recent advances in experimental techniques made it possible to fabricate such junctions,
composed of single molecules (or molecular layers) attached to two (or more) electrodes [2–9].
Exploring the use of individual molecules as active components in electronic devices has been at the
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Fig. 1. The schematic drawing of one dimensional quantum dot array.

forefront of nanoelectronics research, due to the potential advantage of ultrahigh density/speed and
low-cost device fabrication through self-assembly processes.
To study the transport properties of nonlinear, many-body quantum systems, such as quantum dot

arrays, various approaches have been attempted, such as those based on theWigner function, density
matrix, and Non-EquilibriumGreen’s functions (NEGF) [10–16]. The Keldysh NEGF is known to be one
of the powerful techniques to calculate quantum transport in quantumdot systems. The kinetics of the
particle systems are governed by Dyson’s equation, which relates the interacting Green’s functions to
the non-interacting Green’s functions and self-energy functions. In this scheme, the electron–electron
interaction is well incorporated as a term of self-energy which represents the effects on the finite
device Hamiltonian, due to the outgoingwave functions from an impulse excitationwithin the device.
The wave functions are not calculated explicitly in the device region. In addition, one advantage of
this approach, is that the coupling constants between the dot and the leads do not have to be small
compared with either the level spacing of the dot or thermal energy KT [17]. Therefore, the NEGF
approach has gained more popularity in the past few years, which is utilized in the present work for
simulation of current-voltage characteristics of one-dimensional quantum dot arrays.
Much experimental and theoretical work has been reported on nanoscale quantum dot array

systems, generating very interesting results. However, little work published to date has made a
comparison between experimental test data and simulation results. In the present work, we perform
electron transport calculations based on the NEGF approach for a quantumdot array system, study the
quantum tunneling current-voltage characteristics of the system, and make a comparison between
our simulated and experimental results. The reasonable fit between the theory and experiment
manifests that our simulation can provide physical insight and guidance for further experimental and
theoretical studies of such quantum dot array systems, and exploration of their practical applications.

2. Method of simulation

The nonequilibrium Keldysh Green function approach has been used successfully to study the
mesoscopic quantum transport of quantum dots. Consider a system ofN+2 tunnel-coupled quantum
dots, connected with two electron reservoirs, as shown in Fig. 1. The full system can be described by
the Hamiltonian

H =
∑

kσ ,α∈L,R

εkασ c+kασ ckασ +
N+1∑
σ i=0

ε0iσd
+

iσdiσ +
N∑

σ i=0

Vi,i+1(d+iσdi+1,σ + H.c.)

+

∑
kσ

VL(c+kLσd0σ + H.c.)+
∑
kσ

VR(c+kRσdN+1,σ + H.c.)+
N+1∑
σ i=0

Uiniσniσ̄ (1)

where c+kασ (ckασ ) is the creation (annihilation) operator of the continuous state k in the left (right)
reservoir at the energy εkασ , d+iσ (diσ )is the electron creation (annihilation) operator in the ith quantum
dot region at the energy level ε0iσ , Vi,i+1,σ is the tunneling coupling between the ith and (i + 1)th dot,
with σ being the spin index, Ui is the intradot Coulomb interaction energy of the ith dot, niσ = d+iσdiσ
is the electron number operator with σ on the ith dot, and VL(VR) is the tunneling coupling between
the dot 0 (N+1) and the left (right) reservoir. For simplicity, we assume that there is only one localized
energy level on each dot.
In order to calculate the tunneling current, we make use of the Keldysh Green’s function

technique [18–23], and arrive at the current through the quantum dots described by the generalized
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Landauer formula [24–28]

J =
e
h

∑
σ

∫
dε(fL(ε)− fR(ε))Tσ (ε) (2)

where fL(fR) is the Fermi distribution functions in the left (right) reservoir, e.g.

fL(R)(ε) =
1

exp( ε−µL(R)kT )+ 1
, (3)

µL(R) is the chemical potential in the left (right) reservoir, Tσ (ε) is the transmission probability, as
given by

Tσ (ε) = Tr[Γ L(ε)Grσ (ε)Γ
R(ε)Gaσ (ε)] (4)

where the components of the retarded and advanced Green’s functions are defined as Gr,aijσ (t) =
〈〈diσ (t)|d+jσ (0)〉〉

r,a
= ∓iθ(±t)〈{diσ (t), d+jσ (0)}〉, with θ(t) being the step function. The energy

representation of Green’s functions can be obtained using Fourier transforms for time representation.
Γ L(R)(ε) denotes the coupling strengthmatrix, which is defined as (Γ L(R))ij = Γ0(N+1)δ0(N+1),iδ0(N+1),j.
Γ0(N+1) denotes the coupling strength of the dot 0 (N + 1) to the left (right) lead. Therefore, the
transmission probability can be simply expressed as Tσ (ε) = ΓN+1Γ0|Gr0,N+1σ |

2.
To calculate Tσ (ε), we need to evaluate Green’s functions Grijσ (ε). By applying the method of EOM

and Keldysh’s contour integration technique [10,29,30], the equations about Green function Grijσ (ε)
can be written as

(ε − εi + iΓ0δi0 + iΓN+1δi,N+1)Grijσ (ε) = δij + UiG
r
ijσ σ̄ (ε)+ Vi−1,i(1− δi0)G

r
i−1,jσ (ε)

+ V ∗
i,i+1
(1− δi,N+1)Gri+1,jσ (ε). (5)

In the above equations, the two-particle retarded Green’s function Grijσ σ̄ (ε) is involved, and
Grijσ σ̄ (ε) is defined as G

r
ijσ σ̄ (ε) = 〈〈diσniσ̄ |d

+

jσ 〉〉
r . Writing the equation of motion for the two-particle

retardedGreen’s function and considering theHartree–Fock approximation, one obtains the following
expression

(ε − (εi + Ui)+ iΓ0δi0 + iΓN+1δi,N+1)Grijσ σ̄ (ε) = 〈niσ̄ 〉δij + Vi−1,i(1− δi0)〈niσ̄ 〉G
r
i−1,jσ (ε)

+ V ∗
i,i+1
(1− δi,N+1)〈niσ̄ 〉Gri+1,jσ (ε). (6)

Substituting Eq. (6) into Eq. (5), after performing some algebra operations, we obtain the iterative
equation about Green function Grijσ (ε)(

〈niσ̄ 〉Ui
ε − εi − Ui + iΓ0δi0 + iΓN+1δi,N+1

+ 1
)
Vi−1,i(1− δi0)Gri−1,jσ (ε)

− (ε − εi + iΓ0δi0 + iΓN+1δi,N+1)Grijσ (ε)

+

(
〈niσ̄ 〉Ui

ε − εi − Ui + iΓ0δi0 + iΓN+1δi,N+1
+ 1

)
V ∗
i,i+1
(1− δi,N+1)Gri+1,jσ (ε)

= −δij

(
1+

〈niσ̄ 〉Ui
ε − εi − Ui + iΓ0δi0 + iΓN+1δi,N+1

)
. (7)

The average electron occupation number of electron with spin σ , can be solved in a self-consistent
manner using the following relation [29]

〈niσ 〉 = −i
∫
dε
2π
G<iiσ (ε) (8)

where the lesser Green’s functions are defined as G<iiσ (t) = i〈d
+

iσ (0)diσ (t)〉, in which the lesser Green’s
function matrix in energy space is given by the Keldysh equation G<σ (ε) = G

r
σ (ε)Σ

<(ε)Gaσ (ε), with
the lesser self-energy takes on simple formΣ<(ε) = i(fL(ε)Γ L(ε)+ fR(ε)Γ R(ε)).
To calculate the electric current J , we need to obtain the retarded Green’s function Grσ (ε) and the

average electron occupation number of electron 〈niσ 〉 by solving Eqs. (7) and (8) self-consistently.
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Fig. 2. The SEM photograph of gold nanoparticle chains between two electrodes.

3. Experiment

The fabrication of the Au dot array was done by two techniques [31–33]. First the linear
aggregation techniquewas used to formAu colloidal particles in organic solution. Second, amolecular
self-assembly technique was adopted to attach the Au dot array in between two electrodes. A
Au–dithiol–nanocluster–dithiol–Au device resulted from these procedures.
A siliconwaferwith 200nm thick native oxide served as a substrate onwhich leadswere presented.

To create a gap of nanometer scale separation, the leadswere formed using electron beam lithography
and shadow evaporation. In the process, metal was shadow evaporated to give 5 nm Cr and 25 nm Au
in thickness. Then Au bonding pads were defined using optical lithography on the silicon substrate;
20 nm Cr and 80 nm Au were evaporated onto the sample.
The sample was exposed to ultraviolet radiation for 30 min and immersed in an ethanol bath for

10 min in order to remove organic impurities on the surface of sample. Subsequently, the sample was
immersed in a solution of 1 mmol/L 1,6-hexanedithiol for 24 h. Then, the sample was rinsed with two
ethanol baths. The linear dithiol binds one of their end to the Au surface, thereby forming amonolayer.
The sample was then transferred to a solution of Au nanocrystals for 24–72 h. During this step, the
nanocrystals bind to the exposed end groups of the linker molecules which envelope the Au leads.
The morphology of nanoparticle aggregates was characterized with a scanning electron microscope
(see Fig. 2).
Current-voltage characteristics of the quantum dot device were measured in a shielded room,

using a precision semiconductor parameter analyzer (Keithley 4200 Semiconductor Characterization
System) at room temperature. The measured I–V curve is shown in Fig. 3 (solid line).

4. Simulation and discussion

In our numerical calculations, we assume that the quantum dot array is a one dimensional array
and there is one energy level in every quantum dot, i.e. ε00 = ε01 = ε02 = · · · = ε0N = ε0N+1. For
simplicity, we assume that the Fermi level at the right hand side is fixed (µR = 0). When a bias V is
applied between two leads, the Fermi level of the left lead is µL = −eV. In the wide-band limit, line
width function Γ0 and ΓN+1 are energy-independent constants and we assume Γ0 = ΓN+1 = Γ .
Assuming the radius of the gold particles between two electrodes to be 3 nm, the effective

capacitance C of each gold island is estimated to be 4πε0εr r ≈ 0.87× 10−18 F, where r is the radius
of the gold particles, ε0 is the vacuum dielectric constant, and we assume that the dielectric constant
of the organic tunnel barrier 2.6 [33]. Therefore, the Coulomb interaction energy of quantum dots can
be estimated as U = e2/C ≈ 0.18 eV, which is larger than thermal energy at room temperature
(26 meV). In the following calculation, we have U0 = U1 = · · · = UN = UN+1 = U .
From the experimental curve in Fig. 3, we notice that the I–V curve is asymmetric with respect to

the zero bias. We can see step-like structures under negative bias. The I–V curve shows a step-like
feature, with the steps more pronounced for negative voltages than for positive ones. The currents
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Fig. 3. The comparison of tunneling current for 7 quantum dot array with calculated data and experimental data. The
parameters used in the calculations are: ε0i = 0.20 eV for any i and Γ = 65 meV.

in the positive bias region are lower than those in the negative bias region. The positive threshold
voltage is larger than the negative one. To compare with experimental current data, we apply the
NEGF technique to simulate I–V characteristics, using Vij and N as fitting parameters.
From Fig. 2, the gap between the two electrodes is about 80 nm. We estimate that the number

of dots in 1D quantum dot array is between 5 and 15. At first, the number of dots is taken to be 15.
The computed currents are found too small for experimental data. With a decreasing the number of
dots, the computed currents increase. The amplitude and shape of the current curve is very sensitive
to the dot number and tunneling coupling Vij, respectively. We adjust these by making the best fit
to the experimental curve. We found an optimized fit with N = 5 and V01 = 23.0Γ , V12 = 49.0Γ ,
V23 = 1.50Γ , V34 = 0.045Γ , V45 = 0.040Γ , V56 = 0.020Γ , Γ = 65 meV. The simulated curve is
shown in Fig. 3 (dashed line).
The asymmetric features of the tunneling current characteristics described above can be explained

with KeldyshGreen’s functionmodel. Under positive bias, electrons enter the dot array from the right-
side lead.When they arrive at the 6th dot,most of electrons bounce back, due to smallerVN,N+1 leading
to a lower tunneling current, and most electrons from the right-hand side lead only see one energy
level of one dot, ε06 = 0.20 eV. It is found that, at positive bias, the I–V curve exhibitsmainly a step-like
structure due to Coulomb blockade, which correspond to the electron resonant tunneling through the
quantum dots at energy level ε06 and the new sub-level ε

0
6+U created by Coulomb interaction effects.

The arrow 1 and arrow 2 in Fig. 3 denote the two resonant positions, respectively. With increasing
bias, when a resonant level crosses the Fermi level of the source electrode, the current curve shows a
step-like structure.
With negative bias, most electrons enter the dot array from left lead, due to larger V01 (the

tunneling coupling between the 0-th dot and the first dot). So the tunneling current is higher with
a negative bias. Most electrons see the other N + 1 quantum dots. Since the N + 1 interdots are
coupled, N + 1 states are mixed up and form the new energy structure different from that of a single
dot. Moreover, each energy level brings about a sub-level due to Coulomb interaction effects. In this
case, energy levels in the quantum system form a complex energy spectrum. Consequently, in the low
current region, some levels are open to accept electrons. By increasing the bias voltage, a multiple
step-like current feature appears when it flows through the resonant levels which reside between the
Fermi level of left and right electrodes.
To validate this view, we calculate the electronic charge of dots. Fig. 4 shows the electronic charge

for quantum dots in different biases. The following observations aremade from the calculated results:
(1) With negative bias, the charge values are larger than that with positive bias. The electrons go into
the array from the left-side lead easily, so a large number of electrons accumulate in the dots, and
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Fig. 4. The charge of electron for N + 2 quantum dots.

charging effects appear in the I–V curve. Hence the I–V curve shows the rich step-like structures.
(2) With positive bias, since the tunneling electrons see fewer energy levels, the electrons cannot
easily accumulate in the dots and the I–V curve shows a simple step-like structure due to resonant
tunneling. The analysis result is consistent with the above explanations.
Our calculated result resembles the experimental data with low bias, but the experimental data

is larger than the modeled data with large bias. The discrepancy can be resulted from several
approximations in our calculations, including that there is only one energy level in every quantumdot,
and that the current through higher energy levels was not taken into account. In fact, the electronic
structures of quantum dots play an important role in the determination of the tunneling current of
quantum dots. In addition, the bias-dependent tunneling coupling matrix Γ L(R) was not taken into
account in the present calculation.

5. Conclusion

In this work, gold quantum dot arrays are prepared by a linear aggregation technique, and they are
assembled between the two electrodes. Their voltage–current characteristics are measured. These
quantum dot arrays are studied using numerical simulations based on the Keldysh NEGF approach.
Our computational results are in reasonably good agreement with experimental data. Our results
show that the electrical characteristics of gold quantum dot arrays are directly related to the coupling
parameters between the dots. As the inter-dot coupling can be controlled in experiments [34], this
approachmay be used to provide an analysis tool and design aid for quantumdot device development.
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