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Abstract To develop topoisomerase I targeted drug can-
didates with sophisticated liposolubility, a series of novel
camptothecin derivatives were synthesized through
structure-based molecular hybridization and prodrug design
approach. The compounds were used as compositions in
micellar emulsion preparations, and the antiproliferative
efficacy of these preparations were evaluated in two cancer
cell lines (A2780s and A549) in vitro. The designed
molecules were afterwards optimized for better potency by
modifications at the aliphatic chain, the linker and the
camptothecin-yl group to reach the optimal structure 7c
(TQ-B3203), an SN-38 (camptothecin derivative, 7-ethyl-
camptothecin-10-yl) containing compound. 7c showed
excellent capacity of inhibiting cell proliferation with IC50

value at nanomolar level, and the potency was further
confirmed in other human cancer cell lines (HT-29 and
HePG2) superior to the positive reference irinotecan. 7c can
be a promising candidate as antitumor drug. Its micellar
emulsion preparation has succeeded in the preclinical

studies and is in process for investigational new drug(IND)
application.
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Introduction

Although molecular targeted small-molecule antitumor
drugs is developing rapidly, in modern clinical practice,
classical chemotherapeutics still plays an important role
because of their well-studied pharmacological mechanism
and their economic advantage. Targeting property as well as
safety of classical chemotherapeutics are improvable with
the support of preparations using bio-material constituted
carriers, regaining them with competitiveness (Barenholz
2012; Gabizon et al. 1994; Gabizon et al. 2003; Koudelka
and Turanek 2012; Lee and Low 1995; Noble et al. 2006;
Zhang et al. 2004; Zhang et al. 2013). Among the most
common classical chemotherapeutics, camptothecin and its
derivatives have good antiproliferation activity, represent-
ing a typical treatment for wide range of carcinomas
including gastric cancer, colorectal cancer, ovarian cancer,
leukemia and liver cancer (Li et al. 2006; Lorence and
Nessler 2004; Oberlies and Kroll 2004; Thomas et al.
2004). Camptothecin is a topoisomerase I (topo 1) inhibitor
(Redinbo et al. 1998) identified from Traditional Chinese
Medicine prescription (Wall et al. 1966). Camptothecin
binds to the topo I and DNA complex to form a ternary
complex that stabilizes the structure, thereby prevents DNA
re-ligation and causes DNA damage, which eventually
results in cell apoptosis (Fig. 1) (Sukhanova et al. 2003).
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Because of fairly pool solubility in either water or lipid,
meaning low bioavailability and adverse drug reaction,
camptothecin itself has limitations in clinical use. It is
preferable to obtain solubility-improved camptothecin by
chemical modification. Topotecan and irinotecan are most
representative drugs among the chemical modified camp-
tothecin derivatives (Flowers et al. 2003). Topotecan is the
first marketed topo I inhibitor for oral use, while irinotecan,
a medicine for injection use, is approved by FDA much
earlier and readily on the WHO Model List of Essential
Medicines, and comparatively, irinotecan is of greater uti-
lization potential in clinical. The antitumor activity of iri-
notecan relies on its hydrolysis product in-vivo, SN-38
(Fig. 2), a camptothecin-derived active metabolite playing a
direct inhibition role against topo I, leading to suppression
of both DNA replication and transcription (Chazin et al.
2014; Kawato et al. 1991; Liu et al. 2015; Rivory et al.
1996). It suggests that to obtain a better therapeutic based
on camptothecin, the idea that improving bioavalability of
the natural product (better solubility in irinotecan case) by
molecular editing at the same time modifying the compound
into a prodrug structure that releases an active metabolite
after administration can be very practical and inspirational.

To obtain modified camptothecin or camptothecin-
derived prodrug with better solubility, hydrophilicity and
lipophicity should be balanced firstly before designing of
the aimed compounds. The lactone ring in camptothecin
core-structure is highly susceptible to hydrolysis, especially
under alkaline conditions (Adams et al. 2006b), indicating
that modifications to camptothecin derivatives with less
hydrophilicity should be preferred. Also, cellular uptake and
intracellular accumulation of camptothecin derivatives
favors lipophilicity. Lipophilicity makes these compounds
more stable because of improved lactone partitioning into
red blood cells and consequently less hydrolysis of the

lactone. Since camptothecin has affinity for human serum
albumin (HSA), reduced drug-HSA interactions could result
in improved activity (Adams et al. 2006a; Zunino et al.
2002). Using lipid carriers for delivery in circulation may
protect camptothecin derivatives with oil phase surround-
ings which avoid the direct exposing of the chemical to
water soluble hydrophilic HSA in the plasma.

It is reported that tocopherols are commonly used as
covalent conjugates to improve the lipophilicity of drugs
that are poor in liposolubility (Duhem et al. 2014; Nishina
et al. 2015). In fact, trolox (6-hydroxy-2,5,7,8-tetra-
methylchroman-2-carboxylic acid), a water-soluble analo-
gue of vitamin E, can be a good option as modification tool
to contribute the chemical building blocks (Wu et al. 1992).
From this perspective, the camptothecin derivatives con-
sisting of an alkyl trolox-2-carboxylate group as lipophilic
moiety, a linker and a camptothecin/SN38 were designed,
synthesized and evaluated in this work. The first studied
compounds were camptothecin-4-yl ester derivatives 6a–
6d. These compound showed only weak antiproliferation
activity comparing with irinotecan. Further modification
using SN-38 (7-ethyl-camptothecin-10-yl) as pharmaco-
phore was implemented, giving 7-ethyl-camptothecin-10-yl
ester derivatives 7a–7f. In the cell viability tests
using standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT) assay, compound 7c among these
SN-38 analogs that consists of an (R)-2-(Hexadecylox-
ycarbonyl)-2,5,7,8-tetramethylchroman-6-yl moiety and a
succinate linker showed the strongest potency against
A2780s and A549 cancer cell lines. The high anti-
proliferation efficacy of 7c against HT-29 and HePG2 was
later confirmed, appeared to be more potent comparing with
irinotecan as reference preparation.

Experimental methods

The reagents were purchased from Sigma–aldrich, Sino-
pharm and ENERGY, China and used without further
purification. All yields refer to isolated products after pur-
ification. Compounds were characterized by spectroscopic
data (mass spectrometry, MS and nuclear magnetic reso-
nance, NMR). The NMR were measured in CDCl3 relative
to tetramethylsilane (TMS, 0.00 ppm), and recorded on a
Bruker-400MHz NMR spectrometer. MS were obtained
from Finnigan MAT-95 Spectrometry Services.

The synthesis of alkyl 6-hydroxy-2,5,7,
8-tetramethylchroman-2-carboxylate/carboxamide (2)

A solution of 6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid (1, 3 mmol) in 10 mL N,N’-dimethylfor-
mamide (DMF) was added slowly to the stirring solution of
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Fig. 1 Diagram of antitumor mechanism for topoisomerase I (topo I)
inhibitors
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appropriate aliphatic alcohol/ammine (3 mmol), dimethyla-
minopyridine (DMAP, 6 mmol) and 2-Chloro-1-
methylpyridinium iodide (CMPI, 3 mmol) in DMF (20
mL) in a 50 ml flask. The stirring was continued at room
temperature under the atmosphere of nitrogen for 12 h and
the completion of reaction was monitored by thin layer
chromatography (TLC). The reaction on completion was
evaporated under reduced pressure, and mixed with diethyl
ether (50 mL). After 2 h of stirring, the mixture was filtered,
and the filtrate was separated by chromatography (silica gel,
230–400 mesh) eluted by hexane/ethyl acetate. The physical
data for the characteristic compounds is shown below.

Hexadecyl 6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylate

Yield: 65.4%; MS (Positive ESI): m/z= 475.3 (M+H)+,
497.3 (M+Na)+,971.5 (2M+Na)+; 1H NMR (CDCl3, 400
MHz): δ= 4.167 (s, 1H,ArOH), 4.077–3.974 (m, 2H,
O=COCH2), 2.647–2.383 (m, 3H, CH2, ArCH2CH2), 2.160
(s, 3H, CH3), 2.135 (s, 3H, CH3), 2.037 (s, 3H, CH3),
1.878–1.801 (m, 1H, CH2, ArCH2CH2), 1.577 (s, 3H, CH3),
1.535–1.471 (m, 2H, CH2), 1.282–1.174 (m, 26H, CH2),
0.879–0.844 (t, J= 7.0 Hz, 3H, CH3).

13C NMR (CDCl3,
100MHz): δ= 173.3 (C=O), 148.7 (CAr), 140.1 (CAr),
126.5 (CAr), 124.9 (CAr), 121.7 (CAr), 117.0 (CAr), 76.9 (C,
O-C-COO), 64.5 (CH2, OCH2), 31.2 (CH2), 29.8 (CH2),
29.0 (CH2), 28.9 (CH2), 28.8 (CH2), 28.5 (CH2), 28.4
(CH2), 28.0 (CH2), 25.1 (CH3, CH3-C-C=O), 22.0 (CH2),

20.2 (CH2), 13.8 (CH3), 12.6 (CH3), 11.6 (CH3), 11.5
(CH3).

(R)-hexadecyl 6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylate

Yield 72.0%; MS (Positive ESI): m/z= 475.3 (M+H)+,
497.3 (M+Na)+, 971.6 (2M+Na)+; 1H NMR (CDCl3, 400
MHz): δ= 4.173 (s, 1H, ArOH), 4.079–3.690 (m, 2H,
O=COCH2), 2.648–2.384 (m, 3H, CH2, ArCH2CH2), 2.161
(s, 3H, CH3), 2.136 (s, 3H, CH3), 2.038 (s, 3H, CH3),
1.879–1.802 (m, 1H, CH2, ArCH2CH2), 1.577 (s, 3H, CH3),
1.538–1.475 (m, 2H, CH2), 1.302–1.176 (m, 26H, CH2),
0.880–0.846 (t, J= 6.6 Hz, 3H, CH3).

13C NMR (CDCl3,
100MHz): δ= 171.9 (C=O), 148.5 (CAr), 140.7 (CAr),
126.6 (CAr), 125.0 (CAr), 121.7 (CAr), 117.0 (CAr), 76.9 (C,
O-C-COO), 64.5 (CH2, OCH2), 31.2 (CH2), 29.8 (CH2),
29.0 (CH2), 28.9 (CH2), 28.8 (CH2), 28.5 (CH2), 28.4
(CH2), 28.0 (CH2), 25.1 (CH3, CH3-C-C=O), 22.1 (CH2),
20.2 (CH2), 13.8 (CH3), 12.5 (CH3), 11.7 (CH3), 11.5
(CH3).

(R)-hexyl 6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylate

Yield: 85.0%; MS (Positive ESI): m/z= 335.3 (M+H)+,
357.2 (M+Na)+, 691.5 (2M+Na)+; 1H NMR (CDCl3, 400
MHz): δ= 4.081–3.959 (m, 2H, O=COCH2), 2.674–2.392
(m, 3H, CH2, ArCH2CH2), 2.159 (s, 3H, CH3), 2.134 (s,
3H, CH3), 1.991 (s, 3H, CH3), 1.877–1.737 (m, 1H, CH2,

Fig. 2 Two series of compounds
derived from camptothecin/SN-
38 was designed by
incorporation into a trolox group
with the purpose of obtaining
liposoluble antiproliferative drug
candidates. After a brief
screening, one compound (7c)
showed very good lipophicity,
and displayed significant
antiproliferative potential on all
four tested neoplasms cell lines
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ArCH2CH2), 1.578 (s, 3H, CH3), 1.534–1.471 (m, 2H,
CH2), 1.294–1.165 (m, 6H, CH2), 0.876–0.839 (t, J= 7.4
Hz, 3H, CH3).

13C NMR (CDCl3, 100MHz): δ= 173.0
(C=O), 148.8 (CAr), 140.9 (CAr), 126.6 (CAr), 124.9 (CAr),
121.7 (CAr), 117.0 (CAr), 76.9 (C, O-C-COO), 64.5 (CH2,
OCH2), 31.2 (CH2), 29.8 (CH2), 28.9 (CH2), 28.5 (CH2),
28.1 (CH2), 25.1 (CH3, CH3-C-C=O), 22.1 (CH2), 14.1
(CH3), 12.6 (CH3), 11.6 (CH3), 11.5 (CH3).

(R)-dodecyl l 6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylate

Yield: 43.6%; MS (Positive ESI): m/z= 419.4 (M+H)+,
441.4 (M+Na)+, 859.7 (2M+Na)+; 1H NMR (CDCl3, 400
MHz): δ= 4.183 (s, 1H, ArOH), 4.079–3.961 (m, 2H,
O=COCH2), 2.655–2.383 (m, 3H, CH2, ArCH2CH2), 2.161
(s, 3H, CH3), 2.135 (s, 3H, CH3), 2.037 (s, 3H, CH3),
1.879–1.803 (m, 1H, CH2, ArCH2CH2), 1.578 (s, 3H, CH3),
1.525–1.459 (m, 2H, CH2), 1.304–1.178 (m, 18H, CH2),
0.884–0.849 (t, J= 7.0 Hz, 3H, CH3).

13C NMR (CDCl3,
100MHz): δ= 170.9 (C=O), 148.9 (CAr), 140.8 (CAr),
126.5 (CAr), 124.9 (CAr), 121.8 (CAr), 117.1 (CAr), 76.9 (C,
O-C-COO), 64.6 (CH2, OCH2), 31.2 (CH2), 29.8 (CH2),
28.8 (CH2), 28.6 (CH2), 27.9 (CH2), 25.0 (CH3, CH3-C-
C=O), 21.9 (CH2), 20.1 (CH2), 13.9 (CH3), 12.6 (CH3),
11.7 (CH3), 11.6 (CH3).

The synthesis of 2-(alkyloxycarbonyl)-2,5,7,8-
tetramethylchroman-6-yloxy acid derivatives (3)

A solution of alkyl 6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylate/carboxamide (2, 2 mmol), appropriate acid
chloride, acid anhydride or halogen ester (3 mmol), cesium
carbonate (2.5 mmol) in 20 mL DMF was stirring at room
temperature under the atmosphere of nitrogen for 12 h and
the completion of reaction was monitored by TLC. The
reaction on completion was mixed with ethyl acetate (100
mL), and washed 3 times with water (50 mL each). After
drying and evaporating, the residue of the organic phase
was separated by chromatography (silica gel, 230–400
mesh) eluted by hexane/acetone. To obtain the free acid
from the product of halogen ester, an aqueous solution of
LiOH (2 mmol in 5 mL) was added slowly to the stirring
solution of the ester in a 50 mL flask. The stirring was
continued for 2 h and the completion of reaction was
monitored by TLC. The methanol in the reaction on com-
pletion was evaporated and the pH value of the rest solution
was adjusted to 3~4 by adding HCl (0.1 N) dropwise. After
lyophilization, the product was obtained after recrystallized
from ethanol. The physical data for the characteristic
compounds is shown below.

4-(2-(Hexadecyloxycarbonyl)-2,5,7,8-tetramethylchroman-
6-yloxy)-4-oxobutanoic acid

Yield: 87.2%; MS (Positive ESI): m/z= 597.3 (M+Na)+;
1H NMR (CDCl3, 400MHz): δ= 4.066–3.999 (m, 2H,
O=COCH2), 2.916–2.778 (m, 4H, CH2, CH2-C=O),
2.625–2.363 (m, 3H, CH2), 2.136 (s, 3H, CH3), 1.994 (s,
3H, CH3), 1.903 (s, 3H, CH3), 1.866–1.790 (m, 1H, CH2),
1.579 (s, 3H, CH3), 1.512–1.496 (m, 2H, CH2),
1.298–1.193 (m, 26H, CH2), 0.876–0.842 (t, J= 6.8 Hz,
3H, CH3).

13C NMR (CDCl3, 100MHz): δ= 174.2 (C=O),
173.5 (C=O), 170.8 (C=O), 149.0 (CAr), 141.4 (CAr),
126.8 (CAr), 124.7 (CAr), 122.7 (CAr), 117.8 (CAr), 77.8 (C,
O-C-COO), 65.8 (CH2, OCH2), 31.2 (CH2), 29.8 (CH2),
29.0 (CH2), 28.9 (CH2), 28.8 (CH2), 28.7 (CH2), 28.6
(CH2), 28.4 (CH2), 27.9 (CH2), 24.9 (CH3, CH3-C-C=O),
22.4 (CH2), 20.0 (CH2), 14.1 (CH3), 12.2 (CH3), 11.9
(CH3), 11.6 (CH3).

(R)-4-(2-(hexadecyloxycarbonyl)-2,5,7,8-
tetramethylchroman-6-yloxy)-4-oxobutanoic acid

Yield 79.3%; MS (Positive ESI): m/z= 597.5 (M+Na)+,
1194.0 (2M+2Na)+; 1H NMR (CDCl3, 400MHz): δ=
4.084–4.002 (m, 2H, O=COCH2), 2.911–2.776 (m, 4H,
CH2, CH2-C=O), 2.633–2.363 (m, 3H, CH2), 2.137 (s, 3H,
CH3), 1.995 (s, 3H, CH3), 1.903 (s, 3H, CH3), 1.867–1.791
(m, 1H, CH2), 1.580 (s, 3H, CH3), 1.514–1.499 (m, 2H,
CH2), 1.330–1.240 (m, 26H, CH2), 0.878–0.844 (t, J= 6.8
Hz, 3H, CH3).

13C NMR (CDCl3, 100MHz): δ= 173.2
(C=O), 172.6 (C=O), 170.7 (C=O), 148.7 (CAr), 140.9
(CAr), 126.6 (CAr), 124.9 (CAr), 121.7 (CAr), 117.0 (CAr),
76.9 (C, O-C-COO), 64.5 (CH2, OCH2), 31.2 (CH2), 29.8
(CH2), 29.0 (CH2), 28.9 (CH2), 28.8 (CH2), 28.7 (CH2),
28.5 (CH2), 28.4 (CH2), 28.0 (CH2), 25.1 (CH3, CH3-C-
C=O), 22.0 (CH2), 20.2 (CH2), 13.8 (CH3), 12.6 (CH3),
11.6 (CH3), 11.5 (CH3).

(R)-4-(2-(hexyloxycarbonyl)-2,5,7,8-tetramethylchroman-6-
yloxy)-4-oxobutanoic acid

Yield: 79.0%; MS (Positive ESI): m/z= 457.3 (M+Na)+,
891.6 (2M+Na)+; 1H NMR (CDCl3, 400MHz): δ=
4.086–3.974 (m, 2H), 2.915–2.883 (t, J= 6.4 Hz, 2H),
2.809–2.777 (t, J= 6.4 Hz, 2H), 2.667–2.373 (m, 3H),
2.135 (s, 3H), 1.992 (s, 3H), 1.901 (s, 3H), 1.864–1.788 (m,
1H), 1.580 (s, 3H), 1.491 (s, 2H), 1.281–1.189 (m, 6H),
0.857–0.822 (t, J= 7 Hz, 3H). 13C NMR (CDCl3, 100
MHz): δ= 174.9 (C=O), 171.2 (C=O), 170.3 (C=O),
149.3 (CAr), 141.8 (CAr), 127.2 (CAr), 127.0 (CAr), 123.8
(CAr), 117.2 (CAr), 79.5 (C, O-C-COO), 65.9 (CH2, OCH2),
30.6 (CH2), 29.7 (CH2), 29.2 (CH2), 28.8 (CH2), 28.2
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(CH2), 25.6 (CH3, CH3-C-C=O), 22.1 (CH2), 13.4 (CH3),
11.9 (CH3), 11.6 (CH3), 11.2 (CH3).

(R)-4-(2-(dodecyloxycarbonyl)-2,5,7,8-
tetramethylchroman-6-yloxy)-4-oxobutanoic acid

Yield: 86.1%;MS (Positive ESI): m/z= 541.4 (M+Na)+;
1H NMR (CDCl3, 400MHz): δ= 4.089–3.999 (m, 2H),
2.911–2.879 (t, J= 6.4 Hz, 2H), 2.807–2.774 (t, J= 6.6 Hz,
2H), 2.664–2.363 (m, 3H), 2.136 (s, 3H), 1.994 (s, 3H),
1.902 (s, 3H), 1.866–1.790 (m, 1H), 1.579 (s, 3H), 1.496
(m, 2H), 1.299–1.192 (m, 18H), 0.878–0.844 (t, J= 6.8 Hz,
3H). 13C NMR (CDCl3, 100MHz): δ= 174.7 (C=O),
171.1 (C=O), 170.9 (C=O), 149.2 (CAr), 141.0 (CAr),
127.8 (CAr), 126.9 (CAr), 123.3 (CAr), 116.9 (CAr), 79.4 (C,
O-C-COO), 65.7 (CH2, OCH2), 31.2 (CH2), 29.6 (CH2),
28.9 (CH2), 28.8 (CH2), 28.6 (CH2), 27.8 (CH2), 24.9
(CH2), 24.7 (CH3, CH3-C-C=O), 22.7 (CH2), 14.0 (CH3),
12.0 (CH3), 11.9 (CH3), 11.7 (CH3).

The synthesis of 2-(alkyloxycarbonyl)-tocopherol-6-yl
camptothecin-4-yl ester derivatives (6)

A solution of appropriate 2-(alkyloxycarbonyl)-2,5,7,8-tet-
ramethylchroman-6-yloxy acid derivative (3, 0.5 mmol),
camptothecin (4, 0.5 mmol), DMAP (1.2 mmol) and CMPI
(0.6 mmol), in 20 mL DMF was stirring at room tempera-
ture under the atmosphere of nitrogen for 4 h and the
completion of reaction was monitored by TLC. The reaction
on completion was poured onto ethyl acetate (100 mL) and
filtered. The filtrate was evaporated and the residue was
separated by chromatography (silica gel, 230–400 mesh)
eluted by hexane/acetone. The physical data for the syn-
thesized compounds is shown below.

2-(Hexadecyloxycarbonyl)-2,5,7,8-tetramethylchroman-6-yl
camptothecin-4-yl succinate (6a)

Yield: 69.4%; MS (Positive ESI): m/z= 906.3 (M+H)+; 1H
NMR (CDCl3, 400MHz): δ= 8.071–7.980 (m, 2H, Ar-H),
7.846 (s, 1H, Ar-H), 7.780–7.584 (m, 2H, Ar-H), 6.744 (s,
1H, Ar-H), 4.762–4.738 (m, 2H, CH2, OCH2), 4.224 (s, 2H,
NCH2), 4.121–4.050 (m, 2H, OCH2), 2.905–2.715 (m, 4H,
CH2), 2.559–2.425 (m, 2H, CH2), 2.270–2.199 (m, 2H,
CH2), 2.079 (s, 9H, CH3), 2.009–1.879 (m, 2H, CH2),
1.638–1.606 (m, 5H, CH3&CH2), 1.498–1.249 (m, 26H,
CH2), 1.004–0.875 (m, 6H, CH3).

13C NMR (CDCl3, 100
MHz): δ= 172.3 (C=O), 171.5 (C=O), 170.4 (C=O),
168.3 (C=O), 156.4 (C=O), 153.8 (CAr), 149.6 (CAr),
149.4 (CAr), 146.7 (CAr), 145.2 (CAr), 140.1 (CAr), 131.3
(CAr), 130.8 (CAr), 129.2 (CAr), 128.6 (CAr), 127.4 (CAr),
127.0 (CAr), 126.9 (CAr), 126.7 (CAr), 126.0 (CAr), 119.7
(CAr), 115.8 (CAr), 97.0 (CAr), 73.9 (C, O-C-COO), 76.8 (C,

O-C-COO), 66.4 (CH2, OCH2), 66.3 (CH2, OCH2), 54.5
(CH2, NCH2), 34.9 (CH2), 32.2 (CH2), 31.8 (CH2), 30.3
(CH2), 30.0 (CH2), 29.6 (CH2), 29.4 (CH2), 28.7 (CH2),
28.6 (CH2), 25.2 (CH3, CH3-C-C=O), 22.2 (CH2), 20.7
(CH2), 16.4 (CH3), 13.9 (CH3), 12.2 (CH3), 11.8 (CH3), 7.7
(CH3).

Hexadecyl 6-(2-(camptothecin-4-yloxy)-2-oxoethoxy)-
2,5,7,8-tetramethylchroman-2-carboxylate (6b)

Yield: 73.0%; MS (Positive ESI): m/z= 864.5 (M+H)+; 1H
NMR(CDCl3, 400MHz): δ= 8.094–7.977 (m, 2H, Ar-H),
7.850 (s, 1H, Ar-H), 7.779–7.719 (m, 1H, Ar-H),
7.619–7.574 (m, 1H, Ar-H), 6.748 (s, 1H, Ar-H), 4.901 (s,
2H, OCH2), 4.764–4.744 (m, 2H, OCH2), 4.230 (s, 2H,
NCH2), 4.119–4.043 (m, 2H, OCH2), 2.858–2.753 (m, 2H,
CH2), 2.490–2.225 (m, 2H, CH2), 2.084 (s, 9H, CH3),
1.995–1.934 (m, 2H, CH2), 1.630–1.619 (m, 5H,
CH3&CH2), 1.461–1.401 (m, 2H, CH2), 1.340–1.258 (m,
24H, CH2), 0.927–0.863 (m, 6H, CH3).

13C NMR (CDCl3,
100MHz): δ= 170.5 (C=O), 168.6 (C=O), 168.3 (C=O),
157.6 (C=O), 152.0 (CAr), 149.2 (CAr), 148.1 (CAr), 146.6
(CAr), 145.4 (CAr), 145.0 (CAr), 132.8 (CAr), 130.5 (CAr),
129.3 (CAr), 128.6 (CAr), 127.9 (CAr), 127.1 (CAr), 127.0
(CAr), 126.7 (CAr), 119.8 (CAr), 119.6 (CAr), 117.3 (CAr),
96.9 (CAr), 77.0 (C, O-C-COO), 73.9 (C, O-C-COO), 67.3
(CH2, OCH2), 65.3 (CH2, OCH2), 65.0 (CH2, OCH2), 53.1
(CH2, NCH2), 34.4 (CH2), 31.7 (CH2), 30.9 (CH2), 29.7
(CH2), 28.9 (CH2), 28.7 (CH2), 28.5 (CH2), 26.2 (CH3,
CH3-C-C=O), 23.1 (CH2), 20.6 (CH2), 15.9 (CH3), 15.6
(CH3), 14.4 (CH3), 12.9 (CH3), 7.6 (CH3).

Hexadecyl 6-((camptothecin-4-yl)phosphoryloxy)-2,5,7,8-
tetramethylchroman-2-carboxylate (6c)

Yield: 82.9%; MS (Positive ESI): m/z= 824.4 (M+H)+; 1H
NMR (CDCl3, 400MHz): δ= 8.012–7.963 (m, 2H, Ar-H),
7.842 (s, 1H, Ar-H), 7.776–7.737 (m, 1H, Ar-H),
7.609–7.553 (m, 1H, Ar-H), 6.740 (s, 1H, Ar-H),
4.765–4.736 (m, 2H, OCH2), 4.223 (s, 2H, NCH2),
4.141–4.055 (m, 2H, OCH2), 2.862–2.740 (m, 2H, CH2),
2.487–2.226 (m, 2H, CH2), 2.112–2.013 (m, 11H,
CH3&CH2), 1.695–1.603 (m, 5H, CH3&CH2), 1.511–1.406
(m, 5H, CH3&CH2), 1.338–1.240 (m, 24H, CH2),
0.941–0.839 (m, 6H, CH3).

13C NMR (CDCl3, 100MHz):
δ= 172.2 (C=O), 171.5 (C=O), 156.6 (C=O), 152.5 (CAr),
150.2 (CAr), 149.7 (CAr), 146.0 (CAr), 145.5 (CAr), 143.1
(CAr), 132.1 (CAr), 129.4 (CAr), 128.6 (CAr), 128.6 (CAr),
128.5 (CAr), 128.2 (CAr), 127.3 (CAr), 127.0 (CAr), 123.1
(CAr), 121.8 (CAr), 119.6 (CAr), 117.6 (CAr), 98.1 (CAr),
74.8 (C, O-C-COO), 73.7 (C, O-C-COO), 65.7 (CH2,
OCH2), 65.6 (CH2, OCH2), 53.4 (CH2, NCH2), 34.1 (CH2),
32.3 (CH2), 30.1 (CH2), 29.5 (CH2), 28.8 (CH2), 28.8
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(CH2), 28.4 (CH2), 25.2 (CH3, CH3-C-C=O), 21.7 (CH2),
21.6 (CH2), 14.7 (CH3), 14.2 (CH3), 13.7 (CH3), 12.2
(CH3), 11.0 (CH3), 8.4 (CH3).

(R)-2-(hexadecylcarbamoyl)-2,5,7,8-tetramethylchroman-6-
yl camptothecin-4-yl succinate (6d)

Yield: 70.2%; MS (Positive ESI): m/z= 905.5 (M+H)+; 1H
NMR (CDCl3, 400MHz): δ= 8.105–7.964 (m, 3H, Ar-H),
7.844 (s, 1H, Ar-H), 7.780–7.706 (m, 1H, Ar-H),
7.632–7.559 (m, 1H, Ar-H), 6.746 (s, 1H, Ar-H),
4.766–4.740 (m, 2H, OCH2), 4.223 (s, 2H, NCH2),
3.259–3.155 (m, 2H, NCH2), 2.850–2.752 (m, 4H, CH2),
2.495–2.551 (m, 2H, CH2), 2.374–2.122 (m, 2H, CH2),
2.084 (s, 9H), 1.995–1.926 (m, 2H, CH2), 1.637 (s, 3H,
CH3), 1.548–1.508 (m, 2H, CH2), 1.324–1.259 (m, 26H,
CH2), 0.923–0.809 (m, 6H, CH3).

13C NMR (CDCl3, 100
MHz): δ= 175.1 (C=O), 173.3 (C=O), 170.8 (C=O),
167.3 (C=O), 157.1 (C=O), 152.0 (CAr), 149.2 (CAr),
148.1 (CAr), 145.8 (CAr), 144.9 (CAr), 140.7 (CAr), 131.9
(CAr), 130.0 (CAr), 128.7 (CAr), 127.9 (CAr), 127.8 (CAr),
127.8 (CAr), 127.0 (CAr), 126.9 (CAr), 120.3 (CAr), 115.5
(CAr), 96.8 (CAr), 76.4 (C, O-C-COO), 75.1 (C, O-C-COO),
65.7 (CH2, OCH2), 54.1 (CH2, NCH2), 40.8 (CH2, NCH2),
33.6 (CH2), 32.6 (CH2), 31.2 (CH2), 30.4 (CH2), 29.8
(CH2), 29.8 (CH2), 29.3 (CH2), 28.7 (CH2), 28.5 (CH2),
26.8 (CH2), 23.1 (CH3, CH3-C-C=O), 22.7 (CH2), 15.4
(CH3), 14.4 (CH3), 12.1 (CH3), 11.6 (CH3), 7.8 (CH3).

The synthesis of 2-(alkyloxycarbonyl)-tocopherol-6-yl 7-
ethyl-camptothecin-10-yl ester derivatives (7)

A solution of appropriate 2-(alkyloxycarbonyl)-2,5,7,8-tet-
ramethylchroman-6-yloxy acid derivative (3, 1 mmol),
thionyl chloride (2 mmol), 10 µL DMF in 20 mL toluene
was stirring at room temperature under the atmosphere of
nitrogen for 4 h and the completion of reaction was mon-
itored by TLC. After evaporation, 10 mL chloroform was
added to the reaction, and the resulted solution was added
slowly to the stirring solution of SN-38 (5, 0.5 mmol) and
triethylamine (0.6 mmol) in 20 mL DMF in a 100 mL flask.
The stirring was continued at room temperature under the
atmosphere of nitrogen for 4 h and the completion of
reaction was monitored by TLC. The reaction on comple-
tion was poured onto ethyl acetate (100 mL), and washed 3
times with water (50 mL each). The organic phase was
evaporated and the residue was separated by chromato-
graphy (silica gel, 230–400 mesh) eluted by hexane/acet-
one. The physical data for the synthesized compounds is
shown below.

2-(Hexadecyloxycarbonyl)-2,5,7,8-tetramethylchroman-6-yl
7-ethyl-camptothecin-10-yl succinate (7a)

Yield: 50.0%; MS (Positive ESI): m/z= 949.4 (M+H)+,
1898.8 (2M+H)+; 1H NMR (CDCl3, 400MHz): δ=
8.238–8.215 (d, J= 4.6 Hz, 1H, Ar-H), 7.798 (s, 1H, Ar-H),
7.645 (s, 1H, Ar-H), 7.645–7.529 (m, 1H, Ar-H),
5.758–5.718 (d, J= 8 Hz, 1H, OCH2), 5.313–5.272 (d, J=
8 Hz, 1H, OCH2), 5.243 (s, 2H, NCH2), 4.075–4.017 (m,
2H, OCH2), 3.709 (s, 1H, OH), 3.144–3.082 (m, 6H, CH2),
2.597–2.382 (m, 3H, CH2), 2.145 (s, 3H, CH3), 2.020 (s,
3H, CH3), 1.928 (s, 3H, CH3), 1.902–1.801 (m, 1H, CH2),
1.598–1.507 (m, 5H, CH3&CH2), 1.374–1.336 (t, J= 7.6
Hz, 3H, CH3), 1.289–1.187(m, 26H, CH2), 1.024–1.005 (t,
J= 7.4 Hz, 3H, CH3), 0.869–0.835 (t, J= 6.8 Hz, 3H,
CH3).

13C NMR (CDCl3, 100MHz): δ= 172.6 (C=O),
172.4 (C=O), 171.0 (C=O), 170.6 (C=O), 156.7 (C=O),
151.9 (CAr), 150.0 (CAr), 149.1 (CAr), 146.5 (CAr), 145.8
(CAr), 145.1 (CAr), 140.8 (CAr), 131.3 (CAr), 128.5 (CAr),
127.0 (CAr), 126.5 (CAr), 125.3 (CAr), 124.9 (CAr), 121.8
(CAr), 119.0 (CAr), 117.1 (CAr), 115.0 (CAr), 96.6 (CAr),
77.0 (C, O-C-COO), 72.3 (C, O-C-COO), 65.2 (CH2,
OCH2), 64.6 (CH2, OCH2), 49.5 (CH2, NCH2), 31.2 (CH2),
30.3 (CH2), 29.8 (CH2), 29.8 (CH2), 28.9 (CH2), 28.8
(CH2), 28.6 (CH2), 28.4 (CH2), 28.3 (CH2), 27.9 (CH2),
25.1 (CH3, CH3-C-C=O), 25.0 (CH2), 22.2 (CH2), 22.0
(CH2), 20.2 (CH2), 13.8 (CH3), 13.7 (CH3), 12.6 (CH3),
11.7 (CH3), 11.6 (CH3), 7.7 (CH3).

Hexadecyl 6-(2-(7-ethyl-camptothecin-10-yloxy)-2-
oxoethoxy)-2,5,7,8-tetramethylchroman-2-carboxylate (7b)

Yield: 57.0%; MS (Positive ESI): m/z= 908.4 (M+H)+; 1H
NMR (CDCl3, 400MHz): δ= 7.869–7.844 (d, J= 10.2 Hz,
1H, Ar-H), 7.750 (s, 1H, Ar-H), 7.515–7.492 (d, J= 9.2 Hz,
1H, Ar-H), 6.747 (s, 1H, Ar-H), 5.154 (s, 2H, OCH2),
4.761–4.739 (t, J= 8.8 Hz, 2H, OCH2), 4.226 (s, 2H,
NCH2), 4.119–4.057 (m, 2H, OCH2), 3.659 (s, 1H, OH),
2.858–2.754 (m, 2H, CH2), 2.663–2.553 (m, 2H, CH2),
2.486–2.231 (m, 2H, CH2), 2.090 (s, 9H, CH3, ArCH3),
1.894–1.851 (q, 2H, CH2), 1.699–1.586 (m, 5H,
CH3&CH2), 1.482–1.415 (m, 2H, CH2), 1.396–1.251 (m,
27H, CH2), 0.925–0.854 (m, 6H, CH3).

13C NMR (CDCl3,
100MHz): δ= 180.2 (C=O), 171.5 (C=O), 171.3 (C=O),
157.3 (C=O), 153.3 (CAr), 150.3 (CAr), 148.6 (CAr), 145.8
(CAr), 146.2 (CAr), 142.7 (CAr), 139.9 (CAr), 129.1 (CAr),
128.0 (CAr), 127.5 (CAr), 127.6 (CAr), 125.9 (CAr), 124.9
(CAr), 120.4 (CAr), 118.8 (CAr), 116.8 (CAr), 113.5 (CAr),
97.4 (CAr), 79.6 (C, O-C-COO), 75.4 (C, O-C-COO), 66.8
(CH2, OCH2), 65.2 (CH2, OCH2), 65.1 (CH2, OCH2), 50.9
(CH2, NCH2), 35.7 (CH2), 32.7 (CH2), 30.8 (CH2), 30.0
(CH2), 29.3 (CH2), 28.6 (CH2), 28.4 (CH2), 28.1 (CH2),
25.5 (CH3, CH3-C-C=O), 23.5 (CH2), 22.4 (CH2), 20.1
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(CH2), 16.5 (CH3), 15.9 (CH3), 15.1 (CH3), 14.6 (CH3),
12.5 (CH3), 8.1 (CH3).

(R)-2-(Hexadecyloxycarbonyl)-2,5,7,8-
tetramethylchroman-6-yl 7-ethyl-camptothecin-10-yl
succinate (7c)

Yield 76.2%; MS (Positive ESI): m/z= 949.7(M+H)+,
971.7(M+Na)+; 1H NMR (CDCl3, 400MHz): δ=
8.223–8.200 (d, J= 9.2 Hz, 1H, Ar-H), 7.796 (s, 1H, Ar-H),
7.624 (s, 1H, Ar-H), 7.554–7.532 (d, J= 8.8 Hz, 1H, Ar-H),
5.757–5.717 (m, 1H, OCH2), 5.312–5.271 (m, 1H, OCH2),
5.240 (s, 2H, NCH2), 4.092–4.021 (m, 2H, OCH2), 3.714
(s, 1H, OH), 3.142–3.081 (m, 6H, CH2), 2.632–2.389 (m,
3H, CH2), 2.146 (s, 3H, ArCH3), 2.020 (s, 3H, ArCH3),
1.929 (s, 3H, ArCH3), 1.903–1.802 (m, 1H, CH2),
1.589–1.545 (m, 7H, CH3&CH2), 1.374–1.335 (t, J= 7.8
Hz, 3H, CH3), 1.229 (m, 26H, CH2), 1.042–1.005 (t, J=
7.4 Hz, 3H, CH3), 0.869–0.836 (t, J= 6.6 Hz, 3H, CH3).
13C NMR (CDCl3, 100MHz): δ= 172.5 (C=O), 171.0
(C=O), 170.6 (C=O), 156.7 (C=O), 151.9 (CAr), 150.0
(CAr), 149.0 (CAr), 148.9 (CAr), 146.5 (CAr), 145.8 (CAr),
145.1 (CAr), 140.8 (CAr), 131.3 (CAr), 128.4 (CAr), 127.0
(CAr), 126.5 (CAr), 125.3 (CAr), 124.9 (CAr), 121.8 (CAr),
119.0 (CAr), 117.1 (CAr), 114.9 (CAr), 96.6 (CAr), 76.9 (C,
O-C-COO), 72.3 (C, O-C-COO), 65.2 (CH2, OCH2), 64.6
(CH2, OCH2), 49.4 (CH2, NCH2), 31.2 (CH2), 30.3 (CH2),
29.8 (CH2), 29.8 (CH2), 28.8 (CH2), 28.6 (CH2), 28.5
(CH2), 28.3 (CH2), 27.9 (CH2), 25.0 (CH3, CH3-C-C=O),
22.2 (CH2), 22.0 (CH2), 20.2 (CH2), 13.8 (CH3), 13.7
(CH3), 12.6 (CH3), 11.7 (CH3), 11.6 (CH3), 7.7 (CH3).

(R)-2-(hexyloxycarbonyl)-2,5,7,8-tetramethylchroman-6-yl
7-ethyl-camptothecin-10-yl succinate (7d)

Yield: 89.8%; MS (Positive ESI): m/z= 809.5 (M+H)+,
831.5 (M+Na)+; 1H NMR (CDCl3, 400MHz): δ=
8.224–8.202 (d, J= 9.2 Hz, 1H, Ar-H), 7.795 (s, 1H, Ar-H),
7.625 (s, 1H, Ar-H), 7.555–7.532 (d, J= 9.2 Hz, 1H, Ar-H),
5.759–5.718 (m, 1H, OCH2), 5.313–5.273 (m, 1H, OCH2),
5.241 (s, 2H, NCH2), 4.066–4.020 (m, 2H, OCH2), 3.705
(s, 1H, OH), 3.142–3.083 (6H, CH2), 2.632–2.382 (m, 3H,
CH2), 2.144 (s, 3H, ArCH3), 2.018 (s, 3H, ArCH3), 1.927
(s, 3H, ArCH3), 1.901–1.799 (m, 1H, CH2), 1.590–1.512
(m, 7H, CH3&CH2), 1.372–1.334 (t, J= 7.6 Hz, 3H, CH3),
1.232–1.170 (m, 6H, CH2), 1.041–1.005 (t, J= 7.2 Hz, 3H,
CH3), 0.857–0.822 (t, J= 7.0 Hz, 3H, CH3).

13C NMR
(CDCl3, 100MHz): δ= 172.7 (C=O), 171.3 (C=O), 171.6
(C=O), 156.1 (C=O), 153.5 (CAr), 150.5 (CAr), 149.2
(CAr), 148.0 (CAr), 145.2 (CAr), 142.9 (CAr), 140.2 (CAr),
140.9 (CAr), 130.1 (CAr), 127.9 (CAr), 127.3 (CAr), 126.4
(CAr), 127.8 (CAr), 126.0 (CAr), 124.8 (CAr), 119.1 (CAr),
116.1 (CAr), 112.7 (CAr), 98.3 (CAr), 77.0 (C, O-C-COO),

75.0 (C, O-C-COO), 65.9 (CH2, OCH2), 64.8 (CH2, OCH2),
51.6 (CH2, NCH2), 34.5 (CH2), 32.3 (CH2), 29.7 (CH2),
30.2 (CH2), 29.7 (CH2), 28.5 (CH2), 25.4 (CH2), 25.1 (CH3,
CH3-C-C=O), 22.1 (CH2), 21.0 (CH2), 15.9 (CH3), 15.8
(CH3), 15.1 (CH3), 12.1 (CH3), 11.9 (CH3), 7.6 (CH3).

(R)-2-(dodecyloxycarbonyl)-2,5,7,8-tetramethylchroman-6-
yl 7-ethyl-camptothecin-10-yl succinate (7e)

Yield: 76.2%; MS (Positive ESI): m/z= 893.7 (M+H)+,
915.7 (M+Na)+; 1H NMR (CDCl3, 400MHz): δ=
8.220–8.197 (d, J= 9.2 Hz, 1H, Ar-H), 7.794 (s, 1H, Ar-H),
7.623 (s, 1H, Ar-H), 7.552–7.529 (d, J= 9.2 Hz, 1H, Ar-H),
5.755–5.714 (m, 1H, OCH2), 5.310–5.269 (m, 1H, OCH2),
5.238 (s, 2H, NCH2), 4.075–4.108 (m, 2H, OCH2), 3.739
(s, 1H, OH), 3.140–3.081 (m, 6H, CH2), 2.633–2.397 (m,
3H, CH2), 2.145 (s, 3H, ArCH3), 2.020 (s, 3H, ArCH3),
1.929 (s, 3H, ArCH3), 1.902–1.801 (m, 1H, CH2),
1.589–1.506 (s, 7H, CH3&CH2), 1.373–1.335 (t, J= 7.6
Hz, 3H, CH3), 1.272–1.223 (m, 18H, CH2), 1.041–1.004 (t,
J= 7.4 Hz, 3H, CH3), 0.869–0.835 (t, J= 6.8 Hz, 3H,
CH3).

13C NMR (CDCl3, 100MHz): δ= 172.3 (C=O),
171.8 (C=O), 170.2 (C=O), 157.4 (C=O), 152.5 (CAr),
151.0 (CAr), 150.0 (CAr), 148.3 (CAr), 144.7 (CAr), 141.3
(CAr), 140.7 (CAr), 139.4 (CAr), 129.6 (CAr), 129.0 (CAr),
127.9 (CAr), 127.2 (CAr), 127.2 (CAr), 126.6 (CAr), 125.2
(CAr), 119.5 (CAr), 116.1 (CAr), 113.0 (CAr), 97.5 (CAr),
77.5 (C, O-C-COO), 75.0 (C, O-C-COO), 66.6 (CH2,
OCH2), 65.4 (CH2, OCH2), 51.5 (CH2, NCH2), 35.4 (CH2),
32.6 (CH2), 30.7 (CH2), 30.3 (CH2), 29.1 (CH2), 29.0
(CH2), 28.8 (CH2), 25.9 (CH2), 24.3 (CH3, CH3-C-C=O),
22.2 (CH2), 21.8 (CH2), 15.9 (CH3), 15.7 (CH3), 14.4
(CH3), 12.6 (CH3), 11.8 (CH3), 7.5 (CH3).

(R)-2-(hexadecylcarbamoyl)-2,5,7,8-tetramethylchroman-6-
yl 7-ethyl-camptothecin-10-yl succinate (7f)

Yield: 68.0%; MS (Positive ESI): m/z= 949.5 (M+H)+; 1H
NMR (CDCl3, 400MHz): δ= 8.035 (s, 1H, NH), 7.854 (m,
1H, Ar-H), 7.755 (m, 1H, Ar-H), 7.468–7.575 (m, 1H, Ar-
H), 6.748 (s, 1H, Ar-H), 4.763–4.739 (t, J= 9.6 Hz, 2H,
OCH2), 4.226 (s, 2H, NCH2), 3.654 (s, 1H, OH),
3.234–3.176 (m, 2H, NCH2), 2.851–2.755 (m, 2H, CH2),
2.712 (s, 4H, CH2), 2.668–2.542 (m, 2H, CH2),
2.372–2.122 (m, 2H, CH2), 2.083 (s, 9H, ArCH3),
1.930–1.813 (m, 2H, CH2), 1.633 (s, 3H, CH3),
1.562–1.477 (m, 2H, CH2), 1.381–1.196 (m, 29H, CH2),
0.930–0.879 (m, 6H, CH3).

13C NMR (CDCl3, 100MHz):
δ= 175.6 (C=O), 172.8 (C=O), 171.9 (C=O), 171.4
(C=O), 156.4 (C=O), 152.7 (CAr), 149.9 (CAr), 149.4
(CAr), 149.3 (CAr), 146.3 (CAr), 142.5 (CAr), 141.8 (CAr),
139.3 (CAr), 129.0 (CAr), 128.3 (CAr), 127.3 (CAr), 127.1
(CAr), 126.8 (CAr), 126.4 (CAr), 125.4 (CAr), 119.0 (CAr),
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115.9 (CAr), 113.2 (CAr), 98.4 (CAr), 77.7 (C, O-C-COO),
74.6 (C, O-C-COO), 65.0 (CH2, OCH2), 51.5 (CH2, NCH2),
40.3 (CH2, NCH2), 35.2 (CH2), 31.5 (CH2), 31.2 (CH2),
30.5 (CH2), 29.8 (CH2), 29.4 (CH2), 29.2 (CH2), 29.0
(CH2), 27.4 (CH2), 24.5 (CH3, CH3-C-C=O), 22.2 (CH2),
22.0 (CH2), 15.5 (CH3), 15.0 (CH3), 13.9 (CH3), 12.3
(CH3), 11.0 (CH3), 7.4 (CH3).

Preparation of the micellar emulsions

Solutions of designed compounds (0.5 mmol) in the mixture
of Tween-80 (0.5 mL), ethanol (0.5 mL) and poly-
ethyleneglycol 200 (PEG200, 0.5 mL) were mixed with
deionized water (8.5 mL) by vigorous vibration. Con-
centration of each resulted micellar emulsion was estimated
to be 50 mM, and diluted to indicated concentration with
RPMI 1640 (HyClone) plus 10% Bovine Calf Serum
(Gibco) for the activity assay.

Antiproliferation activity

The antiproliferation activity of compounds was established
using MTT method, against human ovarian carcinoma cell
line A2780s and human lung carcinoma cell line A549, and
further confirmed against human colon adenocarcinoma cell
line HT-29 and human liver carcinoma cell line HePG2.

These cells were provided by Chia-tai Tianqing Pharma-
ceutical, Jiangsu, China., In brief, cells were seeded in 96-
well plates at a density of 1× 104 cells/well and then cul-
tured at 37 °C 18 h. The micellar emulsion of compounds
6a–6d and 7a–7f were added to each well (final con-
centrations: 2, 5, 10, 20, 40, 70 and 100 μM). After 72 h
treatment, 20 μL of MTT solution in phosphate buffered
saline (PBS, 5 mg/mL) was added to each well, and the cells
were incubated for another 4 h at 37 °C. After the culture
medium removed, 100 μL of dimethylsulfoxide (DMSO)
was added to dissolve formazan crystal; the percentage of
cell viability was determined using a microplate reader
(ELx808, BioTek). The IC50 values were defined as the
drug concentrations resulting in 50% cell viability compared
to the controls. The antiproliferation activity of compounds
was determined in triplicate, in comparison with Irinotecan.

Result and discussion

Chemistry

The general synthetic procedures for the target compounds
6a–6d and 7a–7f are outlined in Fig. 3. The commer-
cially available starting material 6-hydroxy-2,5,7,8-tetra-
methylchroman-2-carboxylic acid (trolox) 1 was treated

Fig. 3 General synthetic route
to camptothecin derivatives
6a–6d and 7a–7f. Reagents and
conditions: a CH3(CH2)nOH,
DMAP, CMPI, DMF, r.t. (n= 5,
11, 15); or CH3(CH2)15NH2,
DCC, DMF, r.t.; b succinic
anhydride or ethyl 2-
bromoacetate, or
methylphosphonic dichloride,
Cs2CO3/ET3N, DMF, r.t.; for
R2=OCH2COOC2H5, a further
esterolysis gives the free
carboxylic acid; c DMAP,
CMPI, DMF, r.t. d SOCl2,
DMF, toluene, r.t.; e Et3N,
DMF, r.t

3402 Med Chem Res (2017) 26:3395–3406



with aliphatic alcohol/ammine in the presence of DMAP
and CMPI in DMF. This reaction and the reactions there
after should be carried out under the atmosphere of nitrogen
to prevent byproducts from the oxidation of tocopherol
group. To achieve adequate coupling efficiency, the amount
of DMAP was increased from catalytic amount (0.5 Eq,
yield 20 ~ 50%) to 2 Eq (yield 40 ~ 85%). Purified com-
pound 2 was reacted at room temperature with succinic
anhydride, ethyl 2-bromoacetate, or methylphosphonic
dichloride to obtain 3 with the linker conjugation, so that
thecarboxyl esterificated trolox can connect covalently to
camptothecin (compound 4) or SN-38 (compound 5) to give
6a–6d or 7a–7f. Coupling of 3 and 4 were readily realized
using DMAP (2.4 Eq) in presence of CMPI (1.2 Eq).
However, coupling of 3 and 5 did not efficiently initiate
under the same condition. Another strategy to obtain 7a–7f
includes two steps, in which firstly the compound 3 was
activated with chlorinated reagents such as SOCl2, and the
activated product was then reacted with 5 (0.5 Eq). The
crudes were purified using column chromatography on
silica gel. The chemical structures of novel compounds
were confirmed through spectroscopic techniques including
MS and proton nuclear magnetic resonance (1H NMR)
spectroscopy. The results are presented in the Experimental
section.

Antiproliferation activity

The in vitro antiproliferative activities were evaluated
against A2780s cells and A549 cells. Irinotecan was used as
positive reference. As shown in Table 1, compound 6a
showed only weak antiproliferative activity against both cell
lines. For similar camptothecin-4-yl esters with linkers other
than succinate (6b and 6c), no activity improvement com-
paring to 6a was observed. Moreover, using hex-
adecylamine in substitute of hexadecanol did not improve
the camptothecin-4-yl ester (6d) activity, either. The via-
bility of the cells after 7a treatment, on the other hand,
displayed significant decrease at compound comcentra-
tion ≥ 2 μM, far exceeded the potency of 6a and even sur-
passed that of irinotecan, the positive control. Comparing
6a and 7a for activities, SN-38 was considered a preferred
pharmacophore than camptothecin. Another linker for the 2-
(alkyloxycarbonyl)-tocopherol-6-yl 7-ethyl-camptothecin-
10-yl ester derivatives similar to 7a, -CH2CO-, was also
tested (7b). However 7b showed to compromised anti-
proliferation potency, so the succinate linker in 7a is con-
sidered preferable. Based on the above results, the 7-ethyl-
camptothecin-10-yl pharmacophore and succinate linker
were more promising and selected for further structural
modification.

Since compound 7a is racemic, we examined the
potential of its chiral isomer. The R-form (7c) was tested

against A2780s cells and A549 cells, and showed improved
potency than 7a on both cell lines, suggesting R-form is a
preferred chiral isomer. Moreover, considering the carbon
chain on the trolox-2-carboxylate affects significantly the
liposolubility of target compound, we also tested other ali-
phatic alcohol substitution instead of hexadecanol. Com-
pound 7d and 7e, containing a hexyl and a dodecyl group,
respectively, displayed decreased antiproliferation potency
with the alkyl chain length decreasing. To confirm the 2-
amide form of the trolox moiety is less preferable compared
to 2-ester form, hexadecylamine derivative 7f was tested,
and the activity is weaker comparing with 7c, as expected.
In summary, compound (R)-2-(Hexadecyloxycarbonyl)-
2,5,7,8-tetramethylchroman-6-yl 7-ethyl-camptothecin-10-
yl succinate (7c) displayed excellent antiproliferative
activities against the two cell lines compared with the
positive reference drug. The IC50 values (concentration
required to achieve 50% inhibition of the tumor cell pro-
liferation) of the tested compounds for each cell line are
presented in Table 1. Compound 7c was selected as
potential antitumor drug candidate and designated as TQ-
B3203 for further evaluation.

Another antiproliferative activity evaluation using HT-29
cells and HePG2 cells was continued for TQ-B3203 (7c) in
comparing with irinotecan. As shown in Fig. 4, in both cell
lines TQ-B3203 showed antiproliferative activity more than
10-folds stronger than the positive control irinotecan, indi-
cating the candidate TQ-B3203 is very valuable for anti-
tumor drug developing.

Structure activity relationship

The activity of compound 7c, 7e and 7d decreased with
their aliphatic side chain (from long chain aliphatic alcohol
to short chain aliphatic alcohol), suggesting that certain
length of the carbon chain plays important role in the
pharmacological function of 2-(hexyloxycarbonyl)-2,5,7,8-
tetramethylchroman-6-yl 7-ethyl-camptothecin-10-yl succi-
nates. This moiety may provide the compound with
appropriate lipophilic ability to better disperse in the
micellar emulsion, and it could thereby facilitate the
molecule to undergo more efficient uptake by the host cells.

It’s also worth mentioning that succinic acid and succi-
nate participate in the citric acid cycle, an energy-yielding
process in all living organisms. Similarly, trolox is a water-
soluble analog of vitamin E used in biological or bio-
chemical applications to reduce oxidative stress or damage.
And the fatty alcohols are very common in daily diet. All
three above chemical building blocks of 7c have no or very
limited activities against neoplasms. For this reason we
assume that the antiproliferative activity of TQ-B3203 (7c)
is from the 7-ethyl-camptothecin-10-yloxy moiety which
could process hydrolysis in cells and therefore release
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SN-38. Based on this hypothesis, the trolox moiety with the
linker on the compound is preferred to be easily cleaved in
tissue. TQ-B3203 could be considered a prodrug of SN-38
from this perspective, similar to irinotecan in pharmacolo-
gical mechanism (Rivory et al. 1996). Our data showed that
succinate as the linker provided better potential for designed
compounds than other testedl inkers, indicating that succi-
nate was efficient in covalently connect the pharmacophore
with cooperating groups at the same time performing better
in the release of the active hydrolysis product SN-38.

Conclusion

A series of novel camptothecin derivatives were success-
fully synthesized and tested for antiproliferative activities
against two cancer cell lines (A2780s and A549). Each
designed camptothecin-yl compound contain an aliphatic
chain, a water soluble vitamin E moiety and a linker, with
the purpose of being liposoluble for micellar emulsion
preparations. This study led to a potent series of 7-ethyl-
camptothecin-10-yl succinates, which were further opti-
mized for higher potency. Among these compounds, TQ-
B3203 (7c, (R)-2-(Hexadecyloxycarbonyl)-2,5,7,8-tetra-
methylchroman-6-yl 7-ethyl-camptothecin-10-yl succinate)
showed promising inhibition activity in antiproliferation
tests using two additional tumor cell lines (HT-29 and
HePG2), and proved to be the optimal molecule even
stronger than the positive reference drug irinotecan. TQ-
B3203 can be a preferable candidate for antitumor drug
development. Its micellar emulsion preparation has gained
success in the preclinical studies and it is now in process as
investigational new drug(IND) for clinical assessment.
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