


COVER     Recently, nanotechnology for biomedical research has received extensive attention, and 
considerable progress has been made in this area. Nanotechnology encompasses many advanced 
research areas such as nanocharacterization and nanomeasurement based on optoelectronic technology, 
nanomaterials with optically modulated parameters, nanophotonics and nano-optoelectronics. These 
research areas cover important applications such as detection and manipulation of bionanostructures, in 
vitro and in vivo characterization of biomolecules for clinical diagnosis, imaging and detection of single 
cells, cell masses and tissues, functional nanomaterials for dietetic therapy, and nanoscale medical 
transportation systems. As a result, nano-optoelectronics for biomedical research has developed into an 
important and highly promising interdisciplinary field. The background photograph on the cover shows 
in vivo non-invasive NIR fluorescence images of nano-drug carriers. Targeting molecules favors the in 
vivo distribution of drug molecules in the target region, which improves therapeutic efficiency (see the 
special issue: Nano-Biomedical Optoelectronic Materials and Devices).
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The development of nanobiology requires a fundamental understanding of the interaction features between light and cells as well as
cells containing nanoparticles. In this study, the generalized multiparticle Mie (GMM) theory was employed to calculate the scattering
properties of cells under refractive index matching conditions. The angular distribution of scattered light is statistically averaged to
obtain a good fit for the experimental results. Based on a simplified cell model, the variabilities between the scattered light pattern of
normal cells and that of cancerous cells were examined. The results indicate that the small angle scattering is sensitive to the organelle
distribution, which could be applied in the diagnostics of cancerous cells. Finally, the effects of cellular uptake of nanoparticles on
the scattering pattern was also investigated.

light scattering, single cell detection, GMM theroy, cellular uptake
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Optical diagnostic techniques have grown rapidly in recent
years which provide the ability to characterize the tissue
structure and cell morphology at cellular and sub-cellular
level [1–4]. Many of these techniques, such as optical tomog-
raphy, flow cytometry and elastic scattering spectroscopy,
rely on correlating the scattering properties of tissue to infer
its physiological state. The spatial distribution of the scat-
tered light intensity depends on cell’s morphology and the
polarization states of incident light [5,6]. While the com-
plete solution to the inverse problem of light scattering from
single cells still remains a challenge, we can extract cellular
morphological information from the scattered light in specific
angular ranges or the overall pattern to discriminate different
cell types.

Theoretical calculations can provide a better understand-
ing of light interaction features with biological cells, and give
rise to the developments of non-invasive, label-free optical
diagnostic methods [7,8]. Biological cells can be consid-

*Corresponding author (email: guning@seu.edu.cn)

ered as compound dielectric objects consisting of organelles
with different refractive indices. Electromagnetic approaches
should be used rather than geometrical optics based tech-
niques, because the sizes of the scatters are small or com-
parable to the wavelength.

For decades, light scattering from single cells has been in-
vestigated in many scientific and research literatures [9–13].
Dunn et al. [9] employed the finite-difference time-domain
(FDTD) method to simulate light scattering from a single
uniform cell for the first time. Tanev et al. [7] reported the
application of FDTD method to the model of light scatter-
ing from cells for application in advanced cell imaging based
on optical phase contrast microscopy (OPCM) techniques.
Su et al. [13] suggested that the mitochondria inside the cell
change the small angle forward scatter intensity distributions
as in the FDTD simulations. The FDTD is a three dimen-
sional full wave method which can characterize arbitrarily
inhomogeneous dielectric objects. However, these methods
have some limitations. First, the numerical methods require
very high consumption of computational resources. For in-
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stance, it would cost over 12 GB of memory and 24 CPU h
to simulate a yeast cell (diameter, 2 µm) by using the FDTD
method [14]. Second, most simulations for cell scattering
were carried out in one direction. In realistic conditions, the
instruments have insufficient sensitivity to detect individual
cells. Thus, it is inevitable to accumulate and statistically av-
erage the light scattering from a group of cells with different
orientations.

The purpose of this paper is twofold: first, to present the
flexibility of the GMM theory for calculating scattered light
pattern of single cells; and second, to investigate the effects
of cell uptake of nanoparticles on the scattering pattern. The
GMM theory is an extension of Mie theory to the multi-
particle case, which require much lower computational re-
sources compare to the numerical methods. Based on reason-
able approximations, a simplified GMM model was set up for
normal and cancerous cells. To the best of our knowledge, it
is the first time that the GMM theory has been applied in the
light scattering simulations for single cells.

1 Methods

1.1 GMM method

The GMM theory is a semi-analytical solution to light scat-
tering by an arbitrary ensemble of spheres [15]. The incident
and scattered fields are expanded in vector spherical wave
functions around each sphere in the GMM theory. By ap-
plying the boundary conditions at the surface of each particle
associated with vector translation theorems, we can yield the
following large-scale system of linear equations:

al
mn = a−l

n p−l
mn − a−l

n

(1,L)∑

j�l

N j∑

ν=1

ν∑

μ=−ν
(A jl

mnμνa
j
μν + B jl

mnμνb
j
μν),

bl
mn = b−l

n q−l
mn − b−l

n

(1,L)∑

j�l

N j∑

ν=1

ν∑

μ=−ν
(B jl

mnμνa
j
μν + A jl

mnμνb
j
μν). (1)

The scattered fields are determined by the partial scattered
field expansion coefficients (amn, bmn), which can be obtained
by solving the equations numerically.

The linear relationship between the incident and the scat-
tered far-field components, that are parallel and perpendicular
to the scattering plane defined by the direction of propagation
of the plane incident wave and the scattering direction, can be
expressed concisely in matrix form:

⎛⎜⎜⎜⎜⎜⎜⎝
E‖s
E⊥s

⎞⎟⎟⎟⎟⎟⎟⎠ =
eik(r−z)

−ikr

⎛⎜⎜⎜⎜⎜⎜⎝
S 2 S 3

S 4 S 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
E‖i
E⊥i

⎞⎟⎟⎟⎟⎟⎟⎠ , (2)

where S i (i = 1, 2, 3, 4) are the four elements of the am-
plitude scattering matrix, which can be rigorously solved in
terms of the partial scattering coefficients and the geometry
of the scatter. Detailed descriptions of the algorithm can be
found elsewhere [16,17].

1.2 Cell model and parameters

GMM theory can only calculate aggregate of non-intersecting
spheres. To simulate light scattering from cells by GMM the-
ory, we need to make some approximations. First, the back-
ground is matched to that of cytoplasm for more accurate
modelling of scattering by cells embedded in tissue. Sec-
ond, the nucleus and organelles within the cell are assumed
to be spherical. Finally, it does not take into account the ef-
fects of membrane on scattering, because the GMM method
is unable to resolve the cell membrane. This is a reasonable
approximation, previous study has found that the membrane
has a relatively small contribution to scattering [5].

Based on the above assumptions, the cell can be simply
modelled as a dielectric object consisting of any number of
organelles varying with sizes and reflective indices as illus-
trated in Figure 1. The cell has a major diameter of 10 µm,
and the diameter of the nucleus is 4 µm. The randomized or-
ganelles and nano particles are generated by a Monte Carlo
script which can produce different distributions. The refrac-
tive indices of cytoplasm and nucleus are assumed to be 1.36
and 1.38, respectively, and the refractive indices of organelles
uniformly distributed in the range of 1.40 ± 0.05 [6]. The di-
electric functions for gold and Fe3O4 are taken from the tab-
ulated data measured by Johnson et al. [18] and Schlegel et
al. [19], respectively.

The calculations were performed on a normal PC (Intel i7-
2600 3.4 GHz) using the modified GMM program developed
by Xu [15]. The incident light travels along the z direction
with a wavelength of 500 nm. The expansion order of GMM
was set to 50, whose validity had been verified by the calcu-
lations in higher order. For a cell containing 500 organelles,
the program would require about 150 MB of memory and 20
min of CPU time.

2 Results and discussion

Consider a cell with 6.5% organelle density (500 organelles
with radii from 200 to 400 nm). Figure 2 shows the per-
pendicular component of the angular scattered intensity for

Nanoparticle

Cytoplasm

Organelle

Nucleus

Figure 1 Schematic representation of the cell model used in the GMM cal-
culation.
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Figure 2 Perpendicular component of the scattered intensity as a function
of scattering angles for the cells with different orientations.

the cells with different orientations. The scattering is highly
peaked in the forward direction, so that the scattering intensi-
ties are plotted on a logarithmic scale in order to examine the
behaviour in large scattering angles. Light with different po-
larization and direction has different scattered light patterns
due to the asymmetry of the cell structure. For the scatter-
ing pattern of individual orientation (black curve), the scat-
tered light forms a distinctive interference fringe pattern. For
averaged scattering patterns, the intensity variations of inter-
ference fringes are greatly reduced. In actual measurements,
such as flow cytometry and light scattering spectroscopy, the
experimental results are obtained from a large number of cells
or cell suspension. It is more suitable to average the scatter-
ing intensity. The differences between the two averaged pat-
terns (red and blue curves) are subtle. In the following part,
we just plotted the unpolarized scattering patterns which are
averaged over 11 orientations.

2.1 Effects of organelle quantity and distribution

Figure 3 plots the scattering patterns of cells with different
numbers of organelles: 200, 500, 800. The results show that
the variation of organelle quantity changes the angular distri-
bution of light scattered intensity. It is clear that the increase
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Figure 3 Angular light scattering distribution of cells with different num-
bers of organelles.

in organelle number enhance the forward scattering intensity
at large angles (θ > 30◦). For the cell with more organelles,
the scattering patterns appear as a smooth curve due to the
multiple scattering from large numbers of scatterers. When
the small angle intensity (0◦–10◦) is plotted in in linear scale,
as shown in the inset, an apparent linear increase in forward
scattering is also observed.

Figure 4 shows the cases for two type of cells with differ-
ent organelle distributions which are referred as “normal” and
“cancer” cells. For normal cells, the organelles are located
on the nuclear periphery; for cancer cells, the organelles are
mainly located close to the cell surface [13]. As shown in the
inset, the differences in the intensity are evident at small an-
gles. Cancerous cells have a higher intensity than the normal
cells at forward angle (θ = 0◦). However, the exponential de-
cay coefficient of intensity for cancerous cells is larger than
that of the normal cell. Thus, at angles range from 2◦ to 5◦,
normal cells have higher intensities.

The above results show that the increase in organelle
quantity enhances the scattering pattern over all angles, and
change in organelle distribution affects the small angle scat-
tering. Our study is consistent with earlier findings studied
by FDTD methods [5]. The effect of the organelle quantity
and distribution on the light distribution scattering pattern is
an example to a cellular based optical diagnosis method. It
is anticipated that this feature of small angle scattering could
serve as an indicator in the diagnostics of cancerous cells.

2.2 Effects of nanoparticle uptake

The results shown in Figure 5 demonstrate the effect of the
nanoparticle uptake on the scattered light. There are 500
nanoparticles randomly located in the cell cytoplasm. For
contrast, two types of nanoparticles, gold and Fe3O4 (di-
ameter, 50 nm), are considered in the calculation. It is found
that the gold nanoparticles significantly enhance the scattered
light intensity at large angles. Specifically, there is an over
tenfold increase in side scattering (θ > 90◦) compared with
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Figure 4 Comparison of the light scattering distribution of a normal cell
with a cancerous cell.



2666 Wang M, et al. Chin Sci Bull July (2013) Vol. 58 No. 21
In

te
ns

ity
 (a

.u
.)

106

104

102

100

10−2

0 20 40 60 80 100 120 140 160 180
Scattering angle (°)

0 2 4 6 8 10

1.0×106

7.5×105

5.0×105

2.5×105

0.0

Scattering angle (°)

No NPs
With Au NPs
With Fe3O4 NPs

No NPs
With Au NPs
With Fe3O4 NPs

Figure 5 Angular light scattering distribution of cells in the presence of
nanoparticle uptake.

control. However, the Fe3O4 nanoparticles make little differ-
ence on both forward and side scattering. As is known, gold
nanoparticles exhibit the ability to resonantly scatter light due
to the excitation of surface plasmon resonances. The high
scattering cross sections of gold nanoparticles are essential
for scattering imaging leading to the enhancement of scatter-
ing.

Bohmer et al. [20] conjugated the immunoglobulin anti-
bodies to 40 nm gold particles for labelling lymphocytes. As
analysed by flow cytometry, the side scattered signal was en-
hanced more than tenfold by the gold label. This is in quan-
titative agreement with our simulation results.

It should be pointed out that the nanoparticles are ran-
domly distributed in the cell cytoplasm in the calculation.
However, the cellular uptake of the nanoparticles is very com-
plicated. Further theoretical and experimental investigations
are needed to accurately model the spatial distribution of
nanoparticles.

3 Conclusions

In summary, a semi-analytic method, GMM theory is pro-
pose to calculate the scattering properties of single cells. The
GMM theory can greatly reduce the computational resource
requirements, which can permit us to perform the calculation
on a normal PC. The effects of the organelle distribution and
cellular uptake of nanoparticles on light scattering from sin-
gle cells have been studied. To get a better fit for the realistic
situation, the scattering intensities are statistically averaged
over different orientations.

The results show that changes in organelle distribution
can cause significant changes in the forward light scattering,
which could be used to distinguish normal and cancerous
cells. The presence of gold nanoparticles greatly increases
the side scattering due to the high scattering cross sections

of the gold. Meanwhile, the Fe3O4 nanoparticles have lit-
tle effect on the scatterer light. We hope this study can give
rise to new techniques for classification and quantification of
nanoparticle uptake by cells.
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LIU YunQuan LÜ Rong LU Wei LUO QingMing MA YuanLiang NING JianGuo PENG LianMao 

QIAO GuoJun SHAO ZhiFeng SUN Yang  TIAN Lin TONG DianMin TONG LiMin WANG HuiTian 

WANG JiYang WANG PengYe WANG Wei WANG WeiHua WANG YuPeng WEI BaoWen WEI JianYan 

WU DeJin WU Ying WU YueLiang XIAO Min XU FuRong XU HongXing XUE Ping 

YANG Lan ZENG HePing ZHAN QiWen ZHANG HaiLan ZHANG TianCai ZHANG TianJue ZHANG WeiYi 

ZHANG ZhiGang ZHAO ZhenTang ZHENG DongNing ZHENG QuanShui ZHONG DongPing ZHU JinSong  
    

Chemistry    

BO ZhiShan BU XianHe  CAI Yong CAI ZongWei  CHE ShunAi  CHEN JingWen  CHEN XiaoYuan (Shawn)

CHEN ZhongNing  DENG Feng  DU Walter DUAN XiangFeng GAN LiangBing GAO ChangYou  GAO MingYuan  

GONG LiuZhu  GUO LiangHong  GUO ZiJian HAN BuXing HAN KeLi HAN YanChun  JIANG DongLin 

JIN GuoXin  LE X Chris LI XiangDong LI Yan  LI YanMei LIANG WenPing LIU ChunZhao  

LIU Yu  LIU ZhengPing LIU ZhenYu  LIU ZhiPan MA DaWei  MA HuiMin MAO BingWei  

PANG Dai-Wen  QI LiMin  SHAO YuanHua  SHEN WenJie SU ChengYong  SU HongMei SU ZhongMin  

TANG Yi TANG Yong WAN XinHua WANG GuanWu WANG QiuQuan  WANG Xun WANG Ye 

WU Kai WU LiZhu XI Zhen XIA XingHua YANG Bai  YANG JinLong YU HanQing 

YU JiHong YU ShuHong ZHANG DeQing ZHOU BingSheng ZHU BenZhan ZHU LiZhong ZOU HanFa 
    

Life Sciences    

CHEN GuoQiang CHEN Yan  CHENG ZhuKuan CHONG Kang FAN SiLu FANG ShengGuo FU XiangDong  

FU XiaoLan GONG ZhiZhong  GUAN YouFei  HAN ZeGuang  HU ZhiHong HUANG DaFang HUANG Li  

HUANG ShuangQuan JIANG ZhiGang LIN JinXing LIU ZhiHua LU BaoRong MA DaLong  PEI DuanQing 

QIN Song  QIU XiaoBo QU ChunFeng  QU LiangHu  QU LiJia SHA JiaHao  SHAO RongGuang 

SHI SuHua  SUN MengXiang  TAN RenXiang  WAN JianMin  WAN ShiQiang WANG Gang  WANG JianWei 

WANG YiPing WU Mian WU WeiRen XU Tao XU XuDong XUE YongBiao YANG HongQuan 

YU JiaLin  ZHANG ChuanMao ZHANG LiXin ZHANG Xu  ZHANG Xue ZHANG XueMin ZHANG YaPing  

ZHONG Yang ZHOU PingKun  ZUO JianRu     
    

Earth Sciences    

CHAI YuCheng CHEN FaHu CHEN HongBin CHEN Ling CHENG Hai DAI MinHan DONG YunShe 

FANG XiaoMin FENG XueShang FU SuiYan GAO Shan GAO Shu GAO Xing GENG AnSong 

GONG Peng JIAN ZhiMin JIANG ShaoYong LI JianCheng LI ShengHua LI Xia LI XianHua 

LI Yan LIU KamBiu LIU LiBo LIU XiaoDong LÜ HouYuan LU HuaYu LU QuanMing 

LUO YongMing MA JianZhong MENG Jin PAN YongXin PENG PingAn SHAO XueMei SHEN YanAn  

WANG DongXiao WANG HuiJun WANG RuCheng WANG Yang WANG YueJun WU DeXing WU FuYuan 

XIAO JüLe XIAO WenJiao XIE ShuCheng XU YiGang YANG JinHui YE Kai YU ZiCheng 

YUAN XunLai ZHANG HongFu ZHANG LiFei ZHANG PeiZhen ZHANG RenHe ZHANG XiaoYe ZHANG ZhongJie 

ZHAO DaPeng ZHAO GuoChun ZHENG HongBo ZHENG JianPing ZHOU GuangSheng ZHOU LiPing ZHOU ZhongHe 

ZHU MaoYan       
    

Materials and Engineering Sciences  

CHEN XianHui CHEN XiaoDong CHENG HuiMing  DAI LiMing DING Han DING JianDong  GAO RuiPing 

HE YaLing HU XiJun JIN HongGuang  LEUNG Dennis Y C LI YanRong  LI YongXiang LÜ ZhaoPing 

LUO JianBin NAN CeWen NI JinRen  SHI JianLin SU WanHua SUN HongBo  SUN Jun  

SUN YuanZhang  SUNDELL Jan WANG RuZhu  Wang XiaoLin WANG ZhongLin WEI BingBo  XU ChunXiang 

YANG GuoWei  YAO KeFu YU AiBing  YU DaPeng YU XiPing ZHANG Di  ZHANG Xing 

ZHANG YinPing  ZHANG ZheFeng ZHENG ChuGuang ZHU XianFang     
    

Information Sciences   

FENG DengGuo GAO JingHuai HAN WenBao HONG Wei HU DeWen HU ZhanYi JIANG XiaoYi  

LI CuiHua LI ShaoQian LIU Min LIU YuLiang LIU ZhiYong LU Jian LU ZuHong  

MEI Hong NI Lionel M TAN Min WAN MingXi  WANG FeiYue WANG HuaiMin WANG Jing 

WANG Jue WANG XiaoYun XU YangSheng  YAO Xin  YIN QinYe  ZHANG Rong ZHANG Xing 

ZHANG XueGong  ZHAO JiZhong ZHU NingHua  ZHU ShiHua ZHUANG YueTing   
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